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This dissertation explores the connection between two models for a two-level atom
interacting with a single mode electromagnetic field. The first is a semiclassical model in
which the field is treated classically and the atom is treated quantum mechanically, while
the second is a full quantum model in which both the atom and the field are treated
quantum mechanically (sometimes known in quantum optics and other fields as the spin-
boson model). A unique pair of states, which remain factorizable for long times and are
termed quasiclassical states, are derived from the semiclassical model. The quasiclassical
states are found to match the evolution of the quantum model well for fields with the
average photon number sufficiently large. These quasiclassical states are also derived
from the eigenvalues and eigenvectors of the full quantum mechanical model alone.

The semiclassical system has been shown to exhibit chaos. We identify the causes of
the transition to chaotic behavior in the semiclassical system in the vicinity of the
quasiclassical orbits and examine the quantum system for signatures of that transition.
Several authors have claimed to have found such signatures, but by using the
quasiclassical states we show these supposed signatures are not unambiguously related the
appearance of chaos in the semiclassical model. The quasiclassical states also establish a
basis for comparing results for calculations which use the rotating-wave approximation
(RWA) with results from those which do not.

Finally, we extend the work by considering the effects of up to three atoms
interacting with the quantum field. The result is that the system behaves more classically
than for a single atom and some possible signatures of chaos are identified but cannot be

established unequivocally.
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CHAPTER 1

REVIEW OF PREVIOUS WORK

The spin-boson system consists of a two-level system coupled to a harmonic
oscillator. This system has been studied extensively because it is a relatively simple,
closed interaction of two quantum objects and has many different physical
manifestations. In this work we shall consider a two-level atom interacting with a
quantized, single mode electromagnetic field,!? interacting via the dipole
approximation. The Hamiltonian for this system takes the form

H=hwa*a+%ha)oa‘,+I‘1gcrx(a+af), (1.1)
where @ is the field frequency, @, is the energy spacing of the two atomic levels, g is
the coupling cénstant, a and at are the boson annihilation and creation operators, and
o, and o, are the Pauli spin operators. The first term represents the energy in the field,
the second term the energy of the atom, and the third term is the interaction energy.
However, other relevant physical forms include a two-level system such as an atom,
electron, or exciton in a solid coupled to a phonon mode (see for example, Refs. 3 and
4); an ion in a trap, where the internal excitation of the ion forms a two-level system
and the motion of the ion’s center of mass is described by the oscillator;> or a double
well system under the influence of a periodic driving force.” There are more
realizations of the spin-boson system, but these few provide a demonstration of the
broad application of the problem.

The purpose of this work is to study the relationship between the semiclassical
and fully quantum mechanical versions of the problem. The semiclassical verston, in
which the field (oscillator) is treated as a classical system, was found to exhibit chaos

in 1976.8 Since then, the spin-boson system has been studied by numerous authors in




an attempt to discover the relationship between classical chaos and “quantum chaos.”
In what follows, the remainder of Chapter 1 will review the relevant work done by
others, Chapter 2 will examine the origins of chaos in the semiclassical model, and
Chapter 3 will develop and examine the quantum system using a special basis: the
quasiclassical states. Finally, Chapter 4 will use the quasiclassical states to examine

the impact of semiclassical chaos on the fully quantized system.

1.1 Semiclassical Model—Prescribed field

Autler and Townes? studied the semiclassical version of Eq. 1.1 with a
prescribed field. Equation 1.1 becomes for this case
H, =1lhe,o,+2hgvno, cosar (1.2)
where 77 is the average photon number. Because this is a Hamiltonian periodic in

time, Floquet’s theorem can be employed to find two solutions of the form

l %(1)) = [ iAz,,e”"”’la)—li Bme"ﬂhﬂml,,))e-aa:

k=—c0 ——0
l/,_(t) _ © B +e-i(21+l)a a)+ i y ke_izka, b)Y le! (1.3)
21+1 2
I=-e0 k=-c0

where ]a) and ]b) represent the upper and lower eigenstates of o, respectively. This
is the reverse of the notation used by Autler and Townes, but has been used to provide
consistency with other publications!%-12. However, the 4 and B coefficients are
unchanged (except for the trivial relabelling of indices & and / from including only even
or odd integers to including all integers). The calculation of the Floquet characteristic
exponent, A, and the 4 and B coeflicients is based upon infinite continued fractions
and given in detail in Ref. 9. The two special solutions (1.3), which shall be referred
to as the plus and minus branches henceforth, will appear repeatedly in this work.

They are not identified specifically in Ref. 9 but come from Eq. 17 of Ref. 9 by setting




Ay=0 and By=0, respectively. (Incidentally, there is a sign error in that equation

immediately preceding U,.) For zero detuning, i.e. @=awy , the characteristic exponent,

A, and the 4 and B coefficients all depend on a single parameter,
< (1.4)
20

This parameter is the ratio of the Rabi frequency, 2g\/7_1 , to the nominal resonant
frequency, @y, and characterizes the importance of the counter-rotating (energy non-
conserving) terms in the Hamiltonian (1.1).

Shirley also studied the semiclassical problem with a periodic prescribed field.!3
He approached the problem using Floquet theory instead of continued fractions. He
expanded the periodic Hamiltonian using complex exponentials and he solved the
problem using matrix. The approach used here in Chap. 2 will be similar; however, we
will go beyond his work by considering the effect of the atom reacting upon the field.

Without the atomic reaction, chaos is impossible.

1.2 Semiclassical Model—Dynamic field

Although numerous authors have done work on this model, I will review in this
section only those whose efforts have directly formed a basis for this work. The
prescribed field model cannot admit chaotic solutions because it is exactly solvable, as
seen above. Applying a different approximation, the rotating wave approximation
(RWA), with a dynamic field cannot admit chaotic solutions either, because it, too, is
exactly solvable. The RWA involves dropping the two terms from the interaction
portion of the Hamiltonian (1.1) which do not conserve energy. Replacing o, with
(o + ot), where ois the spin lowering operator, the excluded terms are oa and o'a.
These terms correspond to changing the atom from the upper to the lower state while

annthilating a photon and raising the atom from the lower to the upper state while
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creating a photon, respectively. Neglect of these terms generally leads to only very
small quantitative differences. Howeyer, Tavis and Cummings!4 pointed out that for
sufficiently strong fields the RWA breaks down.

The authors of Ref. 8, Belobrov, Zaslavskii, and Tartakovskii (BZT), were the
first to identify chaos in the semiclassical version of Eq. 1.1. Expressed in terminology
used here, they found, at resonance, the entire phase space was chaotic for €2 = 77/32,
or g 2 0.35. They found the extent of the chaotic region was narrow for small values
of g and increased with increasing g. The chaotic region was identified by examining
the time evolution of the trajectories as well as the Euclidean separation between
initially close trajectories. They attributed the chaos to the perturbing effects of the
terms excluded in the RWA. Later, a similar result was published by Milonni,
Ackerhalt, and Galbraith (MAG) on a slightly different model using Lyapunov
exponents and Fourier analysis to identify chaos.!> However, they focused on a
different initial condition and a different part of the parameter space than we have.
They considered an initially weak field with a large number of interacting atoms. For
weak coupling (small g) these conditions give accurate results with the RWA. In
order to obtain the strong fields needed to cause breakdown of the RWA given the
initially weak fields, they required a large initial population inversion. The system then
had enough energy to generate fields strong enough to cause breakdown of the RWA
and chaos.

Fox and Eidson!® compared the results of MAG and BZT and identified the
source of the difference in the models. The MAG model used an effective polarization
density for the interaction between the atom and the field, while the BZT model used
an effective current density. Fox and Eidson also showed the effective current density
arises naturally by assuming factorization of the atom and field in the fully quantum

mechanical model. Next, they demonstrated by a change of variables that the BZT
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model in the RWA is equivalent to a classical spherical pendulum. In addition, the
initial conditions used in the previous studies imply the pendulum is in near-separatrix
motion, while adding the non-RWA terms is approximately equivalent to providing a
periodic perturbation. Thus, the BZT model contains a periodically perturbed, near-
separatrix pendulum, a universally accepted chaotic system.!7 Moreover, the
numerical results showed remarkable similarity between the pendulum motion and the
MAG results, despite the differences in those systems.

Kujawski and Munz!8 pﬁblished a study of the frequencies which appear in the
BZT model. Like the other authors, they considered initial conditions with weak fields
and near full inversion. However, they found the frequencies appearing in the spectra
were combinations of harmonics of two frequencies which they identified. They noted
the values of these frequencies depended upon the strength of the field in the cavity,

but they did not specifically identify the dependence.

1.3 Fully Quantum Mechanical System

Ultimately, most of the interest in the semiclassical model has been correlating
the chaos observed with the evolution of the fully quantized system. There has been a
great flurry of activity in the study of “quantum chaos,” despite (or perhaps because
of) the lack of a generally accepted definition. Because Schrodinger’s Equation is a
first-order, linear equation, chaos in the strictest sense is excluded. However, many
classical systems have quantum mechanical counterparts, and it is the correspondence
between these systems that forms the basis of “quantum chaos.”

At least two distinct approaches have been used to investigate this area for the
spin-boson system. First, some authors, such as Grigolini, ez al.,19-2! have studied
dynamic variables such as the purity or entropy and quantum uncertainty of the

system. Their results were based on two general initial conditions, the atom in the
5




upper state and the field (i) in a coherent state with a small average photon number of
71=5-10 or (i) in an eigenstate of the number operator with n=10. They found the
evolution of the quantum system was marked by rapid growth in the field uncertainty
and increase in the entropy of the atom-field system for parameters in which the
semiclassical system was chaotic. They attributed these results to the effects of
quantizing the dipole. Their work will be discussed in detail in Chap. 4.

Another approach that has been used extensively is examination of the
eigenvalues of the full quantum Hamiltonian. For certain types of systems, such as a
billiard ball in a stadium, the distribution of eigenvalues correlates closely with the
chaotic or non-chaotic behavior of the classical version of the problem.22 For
example, classically, a ball confined to a circular box (stadium) has a non-chaotic
trajectory. However, if the stadium becomes an oval by inserting two short, straight
parallel line segments, the trajectory becomes chaotic. Quantum mechanically, the
circular stadium has many eigenvalues which are closely spaced together; the
distribution of nearest neighbor spacings is described by a Poisson distribution. The
eigenvalues of the oval stadium, meanwhile, exhibit level repulsion; the nearest
neighbor spacing is described by a Wigner distribution.

Ku$ examined the spectrum of the positive parity eigenvalues of Eq. 1.1.2* He
found the eigenvalues followed neither the Poisson nor Wigner distributions.
Moreover, the eigenvalues followed a very regular spacing, even for large values of g
where the system is non-integrable. Next, he measured the sensitivity of the spectrum
to variation in parameters. Sensitivity to variation of parameters has been suggested
as a characteristic feature of quantum chaos.2 He found only the lowest lying
eigenvalues displayed any sensitivity—most levels were quite insensitive to changes in
@,. He concluded from the spectrum the non-existence of “quantum chaos,” based

upon the nature of the two-level system. His conclusion was supported by Graham
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and Hohnerbach,25 who reported, furthermore, that the nearest neighbor spacing
distribution does, in general, approach the Wigner distribution for values of angular
momentum larger than j/=1/2 and, in particular, for /=9/2. The use of higher angular
momentum corresponds to the interaction of the field with a larger number of atoms,
so a more classical behavior is expected. Earlier, these authors presented an
approximate expression for the eigenvalues developed by treating the @, term in Eq.
1.1 as a perturbation.26 The approximate expression gave accurate results in the
region of most interest to this work, large n and g. However, when they applied their
results to discuss the relationship between the behavior of the quantum system and the
onset of semiclassical chaos,?” their conclusions are questionable. The problem with
their work will be covered in Chap. 4.

Although substantially more material could be included in a thorough review of
this field, such a review is beyond the stated purpose here. Rather, I have included
only the material which serves as the foundation of or for comparison with the main
body of this work. However, the next section presents a number of additional articles

which were examined during the course of this research.

1.4 Additional Work Reviewed

This section will very briefly describe some of the other work which has been
done on relating the semiclassical and quantum versions of the spin-boson model.
However, the papers included in this section did not make a vital contribution to the
present effort. They are included here for the sake of completeness.

Cibils and coworkers published a series of articles comparing the results of the
RWA and non-RWA models in the quantum and semiclassical domains.28-30 [n Ref.
28 they obtain classical Hamiltonians which yield the semiclassical equations of motion

for both the BZT8 and MAG!3 systems. They then demonstrated that the MAG
7




system could not be obtained from a quantum Hamiltonian with spin 1/2, but could for
any larger value of spin. Next in Ref. 29 they use a phase approximation to study the
system semiclassically and quantum mechanically. They use the phase approximation
to show a back reaction of the atom upon the field is always present in a consistent
treatment of the expansion in 1/i7. Then they show that the eigenvalues using the
phase approximation and the full quantum mechanical treatment yield similar level
statistics (nearest neighbor distribution and Dyson-Mehta A; statistic) in the non-
RWA, but not in the RWA. Reference 30 reports on their studies using the Husimi
function. By scaling /i=0.01 they pushed the quantum system into the semiclassical
domain. Then they examined the zeroes of the Husimi function, which form a type of
Poincaré map (see Sec. 2.1 for an explanation of Poincaré sections) for the quantum
system. They found the zeros of the Husimi function were regularly distributed when
making the RWA and were somewhat scattered when not making the RWA.

Studies have also been done on the form of the ground state 3132 The more
recent of these references found good agreement between the exact ground state and a
variational ground state based on the sum of two coherent states for intermediate
values of the coupling, g, and the detuning, w-@,. These authors continued their
investigation by examining Poincaré sections of the field for both the semiclassical and
quantum cases.33 In the semiclassical case they used a procedure similar to the one
used here in Chap. 2. For the quantum case, they turn to the Husimi density. They
identify certain features shared by the semiclassical Poincaré section and quantum
Husimi density. In particular, they find that islands of stability in the Poincaré section
are visible in the Husimi density.

Steeb, ef al. consider the closely related one-fermion, one-boson Hamiltonian.34
When making the RWA approximation, they find the nearest neighbor spacings of the

eigenvalues are distributed almost uniformly up to a maximum value. This contrasts




(as it should) with behavior associated with “quantum chaos,” for which the
distribution of nearest neighbor spacings typically goes to zero. For the non-RWA the
spacings form two groups, but still the distribution does not go to zero for zero
spacing.

Following the work done in Refs. 23, 26, and 34, Schmutz considers an
approximation to the eigenvalues of Eq. 1.1 in the high » limit.35 Using the unitary
transformation of Ref. 3, he reduces the spin-boson eigenvalue problem to a purely
bosonic system. Then by extending the Hilbert space of the boson to negative 1 states
he develops an asymptotic scaling law for the eigenvalues. This scaling law
analytically estimates the eigenvalues for large » for any value of the detuning and
coupling. |

Finally, Refs. 7 and 36 discuss localization in a double well system with
tunneling. They found it was possible to localize a particle in such a system by
application of a periodic driving force. We were able to observe this localization in the

semiclassical model in the chaotic portion of the parameter space.




CHAPTER 2

ORIGINS OF CHAQOS

I have used several tools in exploring the presence of chaos in the semiclassical
system. The first part of this chapter is devoted to describing the implementation of
those tools. The second part of the chapter will apply those tools to explore the

semiclassical model in the neighborhood of the periodic orbits obtained from Ref. 9.

2.1 Tests of Chaos

The widely accepted definition of chaos is a “sensitive dependence on initial
conditions.” Sensitive dependence is demonstrated by an exponential separation of
initially close phase-space trajectories. The most straightforward way to look for this
behavior is by simply calculating the Euclidean distance between the points in phase

space and plotting them on a semi-logarithmic scale. The Euclidean distance is defined

A= }i(x,. —x,.')z 2.1

b

to be

where x and x” are the phase space coordinates and # is the dimension of the phase
space. For example, consider the Hénon-Heiles system, which was thoroughly
analyzed by Benettin, Galgani, and Strelcyn.37 This is a classical chaotic system,
containing mixed chaotic and non-chaotic regions for appropriately chosen parameters.
Figure 1 shows the separation of two sets of trajectories, one from a regular region (a)

and one from a chaotic region (b). The chaotic trajectories separate exponentially
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Figure 1. (a) Shows the separation between initially close trajectories from a

non-chaotic portion of the phase space. (b) Shows the separation from a chaotic

portion of the phase space. Note the difference in the vertical scale.
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until the separation is approximately equal to unit distance, which is the approximate
size of the available phase space for the chosen set of parameters (energy E=0.13, q,=-
0.1, p,=0. Refer to Ref. 37 for definitions and details on the Hénon-Heiles system).
Separation of the regular trajectories, however, is much slower and clearly not
exponential. (E=0.13, q,= 0.0, p,=0.0). In Sec. 2.2 we will see similar behavior in the
semiclassical spin-boson model.

Closely related to the exponential growth in the Euclidean distance between
trajectories is the concept of the Lyapunov exponent, A, which gives the rate of
exponential divergence of the trajectories in phase space Because trajectories which
are exponentially separating shortly reach the bounds of the available phase space for a
space with finite volume, accurate calculation of A requires periodically resetting the
trajectories to a small separation. One can then accurately determine the average
exponential separation rate. Reference 37 gives a detailed explanation of resetting the
trajectories and how to determine 1. Most importantly, the process converges on A
only after many iterations. If A=0, the sequence of calculated values decrease linearly
on a log-log plot, i.e. they follow a power law decay. Again returning to the Hénon-
Heiles system, Fig. 2 compares the calculation of A in both ordered and chaotic
regions, using the same initial conditions as Fig. 1.

Another common indication of chaos is in the frequency spectra of the dynamical
variables in the problem. Regular spectra are characterized by a few, well separated
peaks. Chaotic systems have noisy, broadband spectra. Using the same initial
conditions, consider the fast-Fourier transform (FFT) of one coordinate, shown in Fig.
3. The first graph shows the spectrum for the regular trajectory. It shows a few fairly
narrow peaks. On a linear plot, only half a dozen or so would be visible. The second,
in marked contrast, shows a virtually continuous spectrum. Even on a linear graph,

much of the structure would be visible. It is impossible to identify particular peaks as
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in the first graph. In addition to examining the character of the spectrum, it can be
useful to study the changes in the spectrum with changes in parameters or initial
conditions. In the next section, we will see how numerical investigation of the
spectrum led to an analytical result which helps to understand the origin of chaos in
the vicinity of the periodic trajectories described by Eq. 1.3.

A third technique to identify chaos is by examining the Poincaré section. The
Poincaré section is a stroboscopic plot of the trajectory. At periodic time intervals or
when one of the coordinates takes on a particular value, two other coordinates (or
other phase space variables) are plotted against each other. Reference 37 gives an
example similar to Fig. 4a. In this figure, whenever the first coordinate, q,, is zero and
the corresponding momentum, p,, is greater than zero a point is plotted on the graph.
The same two trajectories were used in this figure, and form two distinct sets of
points. One set is scattered throughout the phase space and results from the single
chaotic trajectory, while the other set forms an oval and results from the non-chaotic
trajectory.

The choice of variables for the Poincaré section is not unique; although some
choices are less suitable than others. Figure 4b shows the result for a different section.
Notice this section is not filled in as much, having less than 400 points for the same
trajectory that produced over 1200 points in the oval in Fig. 4a. Thus, I used trial and
error to develop the Poincaré sections used in Sec. 2.2, and found the results
presented there to be satisfactory.

Three distinct tools for examining and quantifying chaos in a classical system
have been presented: Euclidean separation of trajectories and the closely related
Lyapunov exponent, spectral analysis, and Poincaré sections. Each of these will be
used to first identify and then study chaos in the semiclassical version of the spin-

boson model. First, though, I want to develop the equations of motion for the

semiclassical model and relate these to the results of Autler and Townes.?
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2.2 Development of Semiclassical Model

Before endeavoring to develop the equations of motion, I will clarify the

notation being used. The states of the two-level atom will be denoted as |a) and |5),
la) being the upper state. The energy difference between |a) and |b) is e, The

electromagnetic field has frequency w and except as otherwise noted will start in a
coherent state |@), with a =77 .
As mentioned in Sec. 1.2, Ref. 16 provides a clear development of the

semiclassical equations from the purely quantum system. Following the work done

there, we begin with the Hamiltonian in Eq. 1.1 and Heisenberg’s operator equations

of motion:
. 1
o, = E[GX,H] =-w,0,, (2.2a)
. 1
o, :E[Gy,H]:a)oax—chrz(a+a“), (2.2b)
o, :%[UZ,H]:2gav(a+aT), (2.2¢)
ih :
a+at :i[a+af,H]:—iw(a—af), (2.2d)
ih
a-at =—’1—[a—a*,H]: —iofa+a®)-2igo,. (2.2¢)
ih
where the o are the Pauli spin matrices. Now we make the definitions
x=(o,), (2.32)
y=(o,), (2.3b)
z= (oz), (2.3¢)

17




t
a, = <a+a >, (2.3d)
2
a, = <a—.af>~ (2.3e)
2i

In order to apply these definitions, we must take the expectation values of Eqs.
2.2. However, terms which contain products of operators must be treated
approximately. In general, (za) # (z){a). This relationship is an equality only for

those states | V) =| y/) ®| @), where |y) is the atomic part of the wavefunction and |®)

is the field part. Thus we are motivated to find “quasiclassical states,” quantum states
which remain factorizable for a long period of time. Using work done with the RWA
as a basis, 19-12 we expect to find such states for a single or a few atoms and average
photon numbers in the realm of 10-100. Further details on finding the quasiclassical
states will be deferred to Chapter 3; for now let us assume we can treat the states as
factorizable and see what results can be obtained.

Upon replacing operators with their expectation values, Egs. 2.2 become38

X=-w,y (2.4a)
y=wx—-4gza, (2.4b)
7=4gya, (2.4¢)
a, = aa, (2.4d)
a, =—aa, — gx (2.4¢)

These five equations are the semiclassical equations of motion for the atom-field

system. Scaling the system by wy/—1, w/wy— 1, 4(g/wy)a—a,, and 4(g/wy)a,—a, |

and defining f=4g” / (ww,)=16&u/ 11, we obtain the system implemented for

numerical computations:

X=-y, (2.5a)

y=x-za, (2.5b)

i=ya,, (2.5¢)
18




a, = pa,, (2.5d)

a, = -uaq, ——’B~x. (2.5¢)
7]

This system is the same as used in Ref. 18, except for the sign of the field, which was
chosen to match Refs. 10-12. Having derived this for the general case, in what follows
we shall only consider the resonant case, z#=1, unless otherwise noted. In these
systems, the three components x, y, and z form the atomic Bloch vector,!1:3? which has
a constant unit length. In addition, energy is conserved, which has the form
é—Hw—z=§+y(a,2+a22+l)+%fxa, (2.6)

referring to (2.4) or

E:ﬁ(z+xa,)+%2(af+a§) 2.7)
referring to (2.5).

It is straightforward to generalize this to interactions with larger numbers of
atoms in order to obtain a more classical system. First, replace the o; with the
corresponding angular momentum operators .J; in the Hamiltonian (1.1) and in Eq. 2.2.
Let the angular momentum quantum number j = N/2, where N is the number of atoms
interacting. Next, change the definition of x, y, and z to be the expectation of the
corresponding angular momentum operation divided by j. Equations 2.4a-d are then
unchanged and Eq. 2.4e is

a, = —aa;, —4gxj . (2.8)
By scaling g — g/JZ_j , a, > a, \/57 and a, — az\/z_j, Eqs. 2.4 are restored. Thus,
in the semiclassical version of the problem, the equations are unchanged by suitable

scaling in going to a larger number of atoms. Interestingly, since 7 = <afa), n—onlj

and & (: gV 260) remains unchanged. Quantum mechanically, of course, there
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remains a tremendous difference. For clarity, T will defer further discussion of values
of j larger than 1/2 until Chap. 4.

In addition to being useful for numerical calculations, Eq. 2.5 is conceptually
helpful. Noting that f scales like 1/n for fixed &, one can easily see how the reaction
of the atom on the field is diminished with increasing 7. Furthermore, the scaling
makes the magnitude of the field dependent only upon ¢. In Eq. 2.4, a, = Vit at =0.
This becomes, in Eq. 2.5, a, = 8¢&. Increasing i with ¢ fixed makes the system behave
more like the system with the prescribed field, since the magnitude of the field does
not change while the reaction decreases as 1/nn. Therefore comparison to the work in
Ref 9 becomes particularly straightforward, since the system (2.5) reduces to that one
for fixed £ and n-—o0. As mentioned earlier, we expect to require photon numbers
somewhat greater than 7=10 in order to have states which remain factorizable and
provide a reasonable comparison between the quantum and semiclassical models.

The evolution described by Eq. 1.3 is clearly non-chaotic. Each branch evolves
quasiperiodically. How does this quasiperiodic behavior in the limit 7 —co0 become
chaotic as 7 decreases? The simplest manner to compare the evolution of Eq. 1.3
with the numerical integration of Eq. 2.5 is to express the expectation values of o;
when taken over the branches |y,> and [y>. In order to arrive at a general
expression, consider a linear superposition of the plus and minus branches

|w)=C,|w,)+C_|y_). Since this state should be normalized, it is convenient to

write C, and C._ as cos(y/2) and sin(y/2), respectively. Then taking expectation values

gives:
x=c08y Y. 3 2(Ay By znn + AuBrisn) cod(2n+1)ax)
n=0 k=-c
(2.9a)

o0 o0

—siny z Z(AZkAzn'-Zk +sznBZn'—zk—:)Cos(z”'(d —2)”a1)

n'=-~w k=—c0




y=cosyy. ZZ(AZA_BZMM, + A, B, . )(2n+ l)wsin((2n+ l)a)l)
o ke (2.9b)

—siny > S (A Ayay + By Boy iy 200 =22, ) sin(2n' o = 22,1)

n'=—w k=-o

z= COS}’( i(Azzk - B22k+l)+2i i(AZkAZIHZn - sz+|sz+1+2n)0052”a)’)
k=—cw0 n=! k=-w

. (2.9¢)
—siny 3 > 24,B,,. % cos((2n +1)ax —24,1)

n'=-w k=-w

When »=0 or  the trajectories are periodic, corresponding to the plus and minus,
respectively branches. Since A /@ is generally not a rational number, almost all other
trajectories are quasiperiodic. Using the methods of Ref. 9, we can plot 24, vs. &, as
in Fig. 5 below.

Autler and Townes mention the problems associated with multiple solutions for
the characteristic exponent, and we emphasize it as well. Examining Eq. 1.3 one can
readily observe that if 1, is a Floquet exponent, 2na+A, is also a Floquet exponent.
This requires simply factoring out e/2"® from within the summation while relabelling
the indices k and /. This process can be repeated, giving an infinite number of
solutions, none of which are physically distinct. However, replacing A, with -4, results
in swapping the plus and minus branches. (This result does not come directly from Eq.
1.3 because the A’s and B’s depend on 4,; the existence of a second set of solutions ts
discussed in Ref. 9.) The new solution is now physically distinct. Alternatively, the
two branches can be considered as representing two solutions with positive and
negative Floquet exponents.

Before proceeding further, consider the appearance of these solutions in terms of

the Bloch sphere. Figure 6 shows a sequence of plus branch trajectories for different
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Figure 6a. A series of plots in the Bloch sphere showing the trajectories given by the
plus branch in Eq. 1.3. The first plot shows the orientation of the x, y and z axes. The

number printed by each graph indicates the value of ¢ for that trajectory.
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Figure 6b. Additional Bloch sphere plots.




values of £ The number printed by each sphere displays the value of ¢ for that
trajectory. For small values of ¢ the trajectories remain in near-equatorial orbits—the
atom experiences little inversion. However, increasing ¢ increases the inversion, so
that for £=0.368 the trajectory actually passes through the upper atomic state. For the
choice of field phase given in Eq. 1.2, the initial point in all of these plots is in the x-z
plane, with x>0, as shown by the small dot. For £>0.515, however, the initial point
has x <0, and for even larger ¢ it switches back again, but always with z <0. The
minus branch trajectories are obtained by reflection through the origin, but are
otherwise identical.

The evolution of the full semiclassical system given by Eq. 2.5 yields very similar
trajectories for sufficiently large 77, using for the initial condition the point given by
Eq. 1.3 at r=0. It is convenient to define the starting point in terms of the spherical

angles in the Bloch sphere. In that case, we can write

ly,(0)= cos—%la)Jrsin %|b) (2.10a)

ly_(0)) =sin 62’* a)—cos%—lb) (2.10b)

where 6, is the polar angle (colattitude) measured from the positive z axis.

Comparison with Eq. 1.3 yields

cos e = D> Ay (2.11)

2~

A plot of 6, versus ¢is shown in Fig. 7. As the initial point passes through the lower
atomic state, 8, becomes greater than 7. The initial point passes through the lower
atomic state twice, once at £=0.515 and again at £¢=0.831. The orthogonal state is
located at the opposite end of the diameter, and so it passes through the upper atomic

state at the same values.
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Differences between Autler-Townes trajectories and the semiclassical evolution
do exist, although they can be made arbitrarily small given sufficiently large 1. The
first effect, noticeable even for small ¢, is an interaction-induced detuning. Rather than
oscillating at the frequency wy, the trajectory oscillates at @', which is slightly
different. By writing x(f)as

x()= x,cos(2n+1)w't (2.12)

n=0
and the field as
a,(1)=a,(0)cosw't (2.13)

(with a,(0)=8¢)then inserting into Eq 2.5d,e the interaction induced detuning becomes

!

gx() ‘(’xo
—OR == —0 2.14
N 2.14)

by matching terms with the same time dependence. One can see clearly from this

@

relationship that the detuning vanishes for large i, as it should. Equation 2.14 also
shows the detuning will be much smaller than @ since € < 1 and x < 1, while 77 > 10.
Of course, the precise value of x; depends on the detuning used to calculate it. To
obtain even better agreement between the Autler-Townes and semiclassical models,
this procedure can be iterated—finding x;; assuming no detuning, then using the
detuning given by that x;, to calculate a new x;. Because the detuning is small, this
process converges after no more than two iterations for £ < 1.

The detuning found in this manner gives excellent agreement with the detuning
found by numerically integrating Eq. 2.5 The detuning of the numerical results can be
found most easily by converting the field expectation values into a complex phasor
a=a, +ia,. The phasor rotates approximately as e@". Multiplying a by /@' cancels
all but the detuning, which can then be determined by fitting the remaining phase drift

to a straight line.
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The detunings for the two branches are approximately equal in magnitude and
opposite in sign. This is obvious from Eq. 2.9a, by setting y = 7 to obtain the minus
branch. Clearly x for the minus branch is opposite in sign and equal in magnitude to
x, for the plus branch if we neglect the detuning in Eq. 2.9a. Furthermore, since the

detuning is small, the effect it will have on x, when included will be small as well.

2.3 Chaos in the Semiclassical Model

We have seen the semiclassical model has periodic trajectories which are near
the Autler-Townes solutions. In this section we will see these trajectories are stable
for sufficiently large 7, but become unstable as # decreases, resulting in chaos. For
some values of ¢, the plus branch requires a larger value of 7 to remain stable than the
minus branch requires. For other values of &, the minus branch is the first to become
unstable as 77 decreases. The signature of the instability in the trajectory is found in
the spectra: As 1 changes, the location of the peaks shift from the values predicted by
the Autler-Townes solutions, the peaks merge, and complex, chaotic spectra result.
First we will examine the spectra resulting from numerically integrating Eq. 2.5. Then
we will attempt to understand the numerical results analytically. By linearizing the
system around the Autler-Townes solutions (2.9), we can develop an approximate
expression for the frequency shifts and understand why one branch becomes unstable
before the other.

Now consider trajectories which are near, but not precisely on the plus and
minus branches. Figure 8 shows the FFT of the field for # = 1024 and £= 1 with j=-
.1z, In addition to the prominent peak at @=1.00 (recall time has been scaled by @y in
all numerical calculations), additional peaks at @=0.13, 1.87, 2.13 and 3.00 are visible.
These peaks approximately correspond to 2w-24,,, 24,,, 40-24,, and 3w, respectively.

Of course, in the Autler-Townes model, the only frequency appearing is w. The lower
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part of the graph shows the equivalent result for x. Although the spectrum is much
more complicated, most of the frequencies correspond to those just listed, and which
do appear in the Autler-Townes model (see Eq. 2.9). However, the pair of peaks
bracketing w=1 and the four peaks bracketing =3 (two above and two below) do not
arise from the Autler-Townes model. These represent higher harmonics and are
another effect of the atom reacting on the field. Table 1 lists the frequency of each
peak from Figure 8b and gives the combination of @"and 24, needed to produce it.

If we consider @’and 24, each as fundamental frequencies, a parity for each
harmonic can be calculated by summing the factors multiplying these fundamentals.
Notice the parity in Table 1—the total parity is odd. Even harmonics of @' are linked
with odd harmonics of 24, and vice versa. A spectrum of z(f) shows the same type of
behavior, but with only even parity components. The parity relationship is a natural
consequence of the structure of Eqgs. 2.5 and 2.9. The prescribed field contains only
odd parities, so the prescribed-field solution (Eq. 2.9) for x and y contains odd parities,
while z has even parities. When the atom is allowed to react on the field (Eq. 2.5), the
parity structure may (or may not) be preserved. As long as no new frequency
components are introduced by another mechanism, the structure will be preserved.
However, if frequencies of the “wrong” parity are introduced by some means into one
variable, the system (2.5) will allow those frequencies to spread to other variables. We
will see shortly this is the route to chaos from the neighborhood of the Autler-Townes
trajectories.

The obvious question arises: How can frequencies of the “wrong” parity get
introduced? They are the result of a shift in various fréquency components due to the
reaction of the atom upon the field. Using the harmonics given in Table 1 we obtain
agreement to four decimal places between the calculated harmonic frequencies and the

location of peaks from the FFT. However, to get that agreement, we must use the

fundamental frequencies @" and 24, from the FFT, not the Autler-Townes model. The
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Frequency Harmonic Parity
0.1316 20-24, 2-1=1
0.4739 Tw'-84, 7-4=3
1372 30'-44, 3-2=1
1.00045 '’ 1
1.2637 Sw-42, 5-2=3
1.3427 8w™-104, 8-5=3
1.86926 24, 1
2.1325 40’22, 4-1=3
2.4748 S5w-84, 5-4=1
2.7381 w'-44, 1-2=-1
3.0014 30’ 3
3.2646 Tw'-42, 7-2=5
3.3436 6w"-104, 6-5=1

Table 1. List of frequencies found in FFT of x(¢) from numerical integration of

Eq. 2.5, corresponding harmonics, and parity.
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Autler-Townes model predicts the frequencies should be ©'=1.00047w (using Eq.
2.14) and 24,=1.86360w. Including the detuning has no effect on the calculated value
of 24,. Thus, while the Autler-Townes model predicts the detuned @’ frequency to
within 0.002%, it does not account for the 21, discrepancy of 0.3%. One is tempted
to attempt a procedure similar to the one which led to Eq. 2.14 to find a detuning for
22,. Unfortunately, such a simple procedure does not work. The difference is in the
nature of 24,. It arises as an eigenvalue in the solution of a Floquet eigenvalue
problem, and so it involves all the frequency components which appear in the problem,
not just one.

Let us examine the behavior of these frequencies with changing 77. Figure 9a
shows the variation in the frequency of the 2w’-24, harmonic as 7 is varied and shows
no obvious pattern. However, plotting the same frequencies versus 1/77, as in Fig. 9b,
shows a distinctly linear dependence for sufficiently large i7. The frequencies from the
minus branch require a brief explanation. In terms of the components of the Bloch
sphere, all frequencies appear inside of cosine functions (see Eq. 2.9) and so the sign
of the frequencies is unimportant. However, Eq. 1.3 shows the actual frequencies of
the plus and minus branches are of opposite sign. In order to compare the two
branches, the absolute values of the frequencies have been used. Furthermore,
because the frequencies come from taking FFTs of real-valued time series, only the
positive frequencies are significant. Later we will see that the actual sign of the
frequencies is important, but for now we are primarily interested in the magnitudes.

The fit to the plus branch intersects the @ axis at 0.1365 while the fit to the
minus branch intersects at @ = 0.1372. Both provide good agreement with the
Autler-Townes model prediction of 2-1.8636=0.1364. The difference is attributed to
the uncertainty in the locations of the peaks in the FFT and in fitting a straight line to

the locations of the peaks.
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In order to find the correction to 24, then, let us return to the original
eigenvalue problem and search for a linear dependence upon 1/77. First we must
express the system (2.4) as an eigenvalue problem. Let us consider first the Autler-
Townes model with no atomic reaction on the field. The reaction comes from the
term gx in Eq. 2.4e. Deleting that term, we can write a, = Vit coset , and along with
Eqgs. 2.4a-c, we obtain a system of linear equations with periodic coeficients.

According to Floquet’s theorem, there are three solutions (since there are three

dimensions) of the form

x=e" > xe"™, (2.15)

n=-ow

where v is one of three distinct Floquet characteristic exponents. In addition, y and z
can be written in the same form. Substituting these forms into Eq. 2.4a-c, we obtain
an eigenvalue problem which can be truncated and solved numerically. In doing so,
we obtain three values of v={0, 24, -24,,}. The solution v=0 gives the periodic
solution of Eq. 2.9 (y=0,7). The other two solutions must be combined with
appropriate choice of signs to obtain real solutions which correspond to Eq. 2.9 with

y=+m/2. Although in the Hilbert space of the atomic system (i.e. in terms of |a) and
|5)) the plus and minus branches represent orthogonal states, in the Bloch sphere they
differ only by a minus sign, so they are not independent solutions of the eigenvalue
problem derived from Eq. 2.4.

Now to obtain the correction to 24, we must treat the atomic reaction term as a
perturbation. To do so, we shall include the two field equations in our eigensystem.
However, the system is then no longer a linear system. If we restrict our interest to
trajectories near one of the branches, we can write x = x*" + &, where & will be

small, and so on for y, z, a; and a,. Then substituting into Eq. 2.5 we obtain




Ty =y (2.16a)

v+ =x"T - z"a' +&-z"8a, —a]" & (2.16b)
T+ & =y"Tal" +yT & +al &y | (2.16c)
@l + &, =—al'" - e — &, - Pox (2.16d)
a'" + &, =al” + é&a,. (2.16€)

In Eq 2.16a-c, the terms which involve only the unperturbed solutions cancel,
since those are the unperturbed Autler-Townes equations. The field equations must be
handled more carefully. Writing Eqs. 2.16d-e as a single second order differential
equation, we get

" + &, +alT + &a, = —fFx"T + &x). (2.17)
From here we substitute a/'” = 8ccosut, where y=w'/@,. Then using the expression
for @' given by Eq. 2.14, Eq. 2.17 then becomes

&ii, + 8a, = -6 - H{x*T —x, cost). (2.18)
The term in parentheses in Eq. 2.18 is a small correction to an already small quantity,
but cannot be a priori ignored. However, numerical integration of the system with
and without that term showed negligible differences for # in the linear range of Fig. 9.

Therefore, the term will be dropped and we obtain the linearized semiclassical system:

& = -8y (2.192)
y=—a" &~z &, (2.19b)
&=al"y+y*" &, (2.19¢)
&, = ~&a, — P (2.19d)
&, = da, | (2.1%)

While this system appears almost identical to the original semiclassical model, all
the coefficients are now periodic because we have expanded about the unperturbed

trajectory. Furthermore, the system can be expanded as a sum of complex




exponentials, such as-dx = ¢" Z &¢,e™ . Then the equations of motion can be

n=—w

written in two parts: the unperturbed part (which does not involve S or éa) and the

perturbation (which does involve for &a). We obtain, in matrix form, with =" a,

aa,, ~ing 1 0 0 0 &,
. |9, I B e L7 0 0 &,
Sofa k=S 0 0 w4 0 | a e
| &, =0 0 1 —iny  -8ecosut || &y,
&, 0 0 0  8gcosut —iny &,
0 0 0 0Yéu,
0 0 -8 0 0féa,
+3 0 0 0 0 of &, | (2.20)
=20 0 0f &,
0 0 ON &

n

Replacing cosyt , z47 and y47 with their expansions in complex exponentials allows
Eq. 2.20 to be written as an eigenvalue problem, vx=(A+B)x. The actual forms of A
and B are too large (5x00x5x00) to be included here, but truncated forms are included
in Appendix A. The first matrix, A, is the unperturbed part, which is satisfied by the
Autler-Townes solution. A specific value of #f must be selected in order to calculate
the detuning. Using &=1.0 and #7=1024, the unperturbed eigenvalues when expanding

about the plus branch are
( -1.1378 -0.1374 08631 ]

~1.0009 -4.7-10* 1
v={...~10005 0 1.0005--- ¢ (2.21)
-1 4.7-10°  1.0009
~0.8631 0.1374 08631 |

The eigenvalues come in sets of five, with each set separated in frequency by 4. The
eigenvector for the eigenvalue 1=0 corresponds to the periodic trajectory given by Eq.
2.9 with y=0, 7, as discussed above. Likewise, the eigenvalues v=+21, (=+0.1374)
have already been discussed. Note, however, that the eigenvalue obtained by
following the convention of Autler and Townes (see Fig. 1 of Ref. 9 and the discussion
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which immediately follows it) yields 24, /w=1.8636=2u-v. Again, care must be taken
to avoid problems from having multiple, physically equivalent solutions. The field
components of both of these eigenvectors are all zero.

The new eigenvalues, v=+(u-1), are simply the interaction-induced detuning, &.
The corresponding eigenvectors give the periodic field oscillations. Like the solutions
using £24,,, the periodic field solutions must be obtained from linear combinations of
the eigenvectors in order to obtain real solutions. Since the eigenvectors are
particularly simple for these eigenvalues, consider how the real solutions are formed.
The éa, part of the eigenvector for the positive detuning eigenvalue, v=(u-1) can be

expressed as
&l = Z &llnei(”l” Wit - Z&llnei((rﬁ»l)y—l)t
(2.22)

1 {(n+ =)
=—=)> 0,6 =—¢
HEo 7

where & , is the Kronnecker delta. If v=mu-1, then Eq. 2.22 can be generalized to

&l = %Z 5_”,‘nei(n/l+("l/l*|))' = —‘/%'e‘” . (223)

Similarly, the &a, part of the eigenvector has an iN2 in the same frequency
component. In the same manner, the negative detuning eigenvalue yields

[

&ll - _\/1——_2.2 5—’"‘"ei(n/l+(m/l+l))l - —\/—2‘:6’

&1, = —T; Z 5., et —T;'ei, (2.24)
Therefore, the real-valued &a,(7) is formed by the sum of the eigenvectors, while
&lz(f) is formed by the difference.

The change in the Floquet exponent due to the perturbation (i.e., the reaction of
the atom on the field, described by the second matrix, B) can be found using standard
perturbation techniques. Because of the parity considerations discussed at length

earlier in this section, first order perturbation theory yields no change in 24,,. The
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expression for the first order change in an eigenvalue is

w =y | v) (2.25)

n

where W' is the perturbation and |y, (9) are the unperturbed eigenvectors. The

perturbation matrix elements connect the field and atomic portions of the eigenvectors.
However, no eigenvector has non-zero components in both the field and the atomic
portions. Therefore, the first order perturbation is zero for all the eigenvalues.

Care must be taken in using second order perturbation theory because the
perturbation is non-Hermitian. The appropriate expression for the second order
correction to the nth eigenvalue w,, is
) v

0)

m

(0)
) _ z :(W"
w," =

mra

W ’I y/f,o)>

(2.26)

w® —w
We are interested in the perturbation to the eigenvalues v=+21, (which are equivalent
to the eigenvalues v=+0.1374). Since these correspond to atomic eigenvectors, based
on the discussion in the preceding paragraph the only eigenvectors which will
contribute to the sum are the field eigenvectors. Let the unperturbed atomic
eigenvector |A9) correspond to the eigenvalue v (=-0.1374). Let the field

eigenvalues be denoted by «,,,=m+5 with the corresponding eigenvector denoted by

|®,,.®). Having defined these quantities, Eq. 2.26 becomes

A‘X:) _ Z <y,£0) BI (Df,?i) ><(DE.(.2 BI l//(+0)> , (227)

V- amt

m
+

where the + indicates summation over m first with the upper sign and then with the

lower sign. Further simplification is achieved by noting that the only non-zero part of

B|®,,.(®) which survives is the &a, portion, while only the &a, portion of (®,,,(O|B
survives. The non-zero component from eigenvector |®, ,(0) is -(m=1), as discussed

above. In order to find the matrix elements of B, first express Eq. 2.9 in terms of
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complex exponentials. Then let x,,, y,, and z,, be the coefficients of /@ with y=0 and
"» V' and z', be the coefficients of e/"@244) with y=7/2. Then the matrix elements of

B are given by x,, y,, and z,,. The components of |y,(9) can be obtained either from

the eigenvector corresponding to v or from x',, y',, and z’, after they have been

normalized to unity. Equation 2.27 can be expressed as

i[z (y;.zntnm - Zrll‘ynilﬂu )](_ix;-'l—m)

2.28
v-mu¥o (2.28)

M =pY

Finally, the summation in the numerator of Eq. 2.28 is exactly equal to -ix';,_,,. Thus

the second order perturbation can be written in the fairly simple form

AV = ﬂz b ) (2.29)

v-muFs

Fortuitously, even for values as large as £=1, only a single term from each sum
over m is significant, m=+1 from the summation over the upper signs and m=-1 from

the summation over the lower signs. This simplification leads to the final result

(2) 2 2.2
AV = 2A%; _ g X, _ 16£7x; 1 (2.30)

@ ©)? ©\? 7T
o 1—(2,;—2}““ ) 1—(2;1—2’1“ J
wO wO

where x/; is the component of the eigenvector which oscillates at the frequency 2w'-

24,. Thus we obtain the desired 1/ dependence for the variation of 24,.. For &1,
Eq. 2.30 evaluates to approximately 6.9/ir, This value is in reasonable agreement to a
linear least squares fit to the values of 24, which yields a slope of approximately 6.3.
Examining the perturbation to the other eigenvalue, -2, or v=+0.1374, we find
only one difference. The summation over » in Eq 2.28 yields ix’;,_,,,, so there is an

overall difference in sign. The perturbed eigenvalues still have the same magnitude as
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the perturbed +24,, eigenvalue, but are opposite in sign. Thus, linearizing in the
vicinity of the plus branch yields eigenvalues which tend toward zero with increasing
/i1,

We can now repeat the entire process which led to Eq. 2.28-2.30, but perturbing
about the minus branch. The final result of this procedure is a difference in sign for the
perturbation. Therefore, linearizing in the vicinity of the minus branch yields
eigenvalues which increase in absolute value, i.e., tend away from zero with increasing
I/n.

Reaction of the atom upon the field causes several other effects which can be
explored in the same manner. These include generation of extra frequency
components in the field, alteration of the magnitudes of the frequency components,
and so forth. Several of these have been explored and met with results similar to those
above. Therefore, they need not be discussed further.

We are now prepared to return to the question of chaos in the semiclassical
system. As the Floquet exponent changes, it can intersect with other frequencies in
the system. For the plus branch, the peaks merge near 7 =90, as shown in Fig. 10. As
the peaks merge, the system becomes chaotic. The “wrong” parity frequency
components result from the merging of the different frequency components.
Components which previously had no means of interaction can now interact and the
result, literally, is chaos.

Figure 11 compares the Euclidean separation of nearby trajectories for 7 =85
and 7=95. For 71=95, the trajectory is clearly non-chaotic—the trajectories actually
become closer together with time, then return to their original separation. On the
semi-logarithmic scale, there are no linear regions indicating exponential growth.
Conversely, the 7=85 trajectory exhibits behavior indicating it is on the verge of

becoming chaotic. The separation exhibits exponential growth for approximately 1.5

decades before decreasing. Although the growth does not remain exponential for
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long, the initial separation is definitely exponential and thus satisfies the definition of
chaos. In fact, a fit to the linear portion of the graph gives an exponent 0.042.

However, we can consider the other indicators of chaos as well. Figure 12
shows the sequence of estimated Lyapunov exponents. Like the Euclidean distance,
we see regions of exponential growth punctuated by exponential decay. In order to
attempt to understand this phenomenon, the time series of x is plotted on the same
graph. The time series shows the regions of exponential growth occur when the
trajectory is close to the Autler-Townes solution. As the trajectory deviates, as
evidenced by the increase in the average value of the oscillations, the growth is
damped, only to return as the trajectory returns to the vicinity of the Autler-Townes
solution. For this reason we claim the frequency shift from the Autler-Townes
solution is related to chaos in the following way: The Autler-Townes trajectory is a
periodic trajectory which becomes unstable as a result of these shifts in the frequency.
Another indication of chaos is the qualitative change in the spectrum given by the FFT
of the time series, as shown in Fig. 13. Observe the contrast between the spectrum for
n=95 and 7 =85. Like the spectrum shown earlier for 77=1024, the spectrum for
m=95 consists of a few well separated peaks which can be identified with various
harmonics of @"and 24,. The spectrum for #7=85, on the other hand, shows many
more peaks, including peaks of the “wrong” parity, as discussed earlier. Like the
Euclidean separation, the FFT does not show the system to be strongly chaotic.
However, it does show a qualitative change has occurred and the transition to chaotic
behavior is underway.

Finally, consider the Poincaré section. For #7=95, the Poincaré section is a very
small oval, as seen in Fig. 14a. The scatter in the points is due to the limited precision

in interpolating to find the locations of the zeroes of x(¢). Notice how small an area in
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Figure 10. Graph shows that two different harmonics (4w-24, and 24,) shift
with decreasing 77 and merge. As they merge, the system becomes chaotic. The

straight lines indicate a linear fit to the large 77 region.
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Figure 11. Euclidean distance between initially close trajectories for different

values of 77. The solid line is clearly non-chaotic, while the dotted line is on the verge

of chaos.
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(b) The trajectory is marginally chaotic, with 77=85.
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the phase space is enclosed. However, Fig. 14b-d shows that as 7 decreases the area
enclosed by the Poincaré section increases in size and complexity.

All three tests for chaos show a qualitative change as 77 decreases from 95 to 85.
This transition is marked by the merging of two frequency components which results
in the system becoming chaotic. The frequency shifts can be traced to an interaction
predicted by second-order perturbation theory. Of course, a single instance would not
be sufficient to establish a cause and effect relationship, so let us now consider the
transition to chaotic behavior for the minus branch with the same value of & The
magnitude of the slope of the minus branch line in Fig. 9b is approximately 6.5, in
reasonable agreement with the value given by Eq. 2.30. There are no frequency
components appearing in Eq. 2.9 which are slightly larger than 2'-21,. However, we
do observe in the spectrum of x a harmonic at -(3w"-41,)=0.7272. These two peaks
merge near 77 =32, and the transition to chaos is much stronger. Using the same tests
for chaos, let us examine this transition. First, the Euclidean separation and Lyapunov
exponent are shown in Fig. 15. Just as for the plus branch, we observe a change in the
behavior of the system as 77 drops from 35 to 30. The Euclidean separation shows an
exponential growth, which in this case does not entirely decay before the next growth
cycle occurs. An exponential fit yields an exponent of approximately 0.050. The
separation between non-chaotic trajectories, while growing, is not exponential. This is
very similar to the behavior seen in the Hénon-Heiles system in Sect. 2.1. The
Lyapunov exponent for the chaotic trajectory converges to approximately 0.015. The
rapidity with which the Lyapunov exponent converges shows the more robust nature

of the chaos in this portion (smaller 77) of the parameter space.
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The difference in the FFTs for 71=30 and 7 =32 also demonstrates the change
from regular to chaotic behavior. The two peaks at @=0.304 and «=0.378 are the two
harmonics which merge (3w’-44 and 2w'-24,,) as discussed above. They have shifted
significantly from their 7= oo values of @=0.7272 and &=0.1364. As with the plus
branch, the shift departs from linearity shortly before the peaks merge. As they do, the
frequency components become broadband regions instead of individual peaks,
demonstrated by Fig. 16. Incidentally, the “wrong” parity frequency components do
not become significant, probably because the harmonics did not merge in the vicinity
of the frequency components which were absent. Finally, we observe the change in
the Poincaré section in Fig. 17. In this instance, the break from regular to chaotic
behavior can be observed with increasing time. For 7=30.2, the transition occurs
near £ = 621. Before this time, all the poiﬁts in the Poincaré section fall along the
curve formed by the + marks. Afterwards, the points are more scattered, falling
generally in the same region as for the plus branch.

The reader should notice an important difference exists between the transition to
chaos in the plus and minus branches. Namely, in the minus branch, one of the
merging harmonics does not exist in the Autler-Townes model. This harmonic, like
the other higher harmonics of 24, in Table 1, result from the term which was discarded
in Eq. 2.17. The relatively low value of n suggests that the Autler-Townes model is
of relatively little relevance; the success of the approach here is not so much the
prediction of chaos, but rather the prediction that chaos occurs sooner for the plus
branch than for the minus branch.

Our analytical approach has three important limitations. First, the Autler-
Townes trajectory is not identical to the periodic trajectory in the semiclassical model.
It is close to the periodic trajectory, but the starting points are not exactly the same,
especially for smaller 7. Second, perturbation theory gives only the lowest order

correction in 1/77, i.e_, the slope of the 1/i7 plot. Third, we have neglected an
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inhomogeneous term which generates harmonics which this approach is unable to
account for. Nonetheless, these results do demonstrate the transition to chaos occurs
by reducing 77 from i =co, where the semiclassical model is identical to the Autler-
Townes model, to 77 <100, where chaos begins to emerge. Furthermore, we are able
to attain a qualitative understanding of why one branch becomes unstable before the
other. Before moving ahead to examine the relationship between chaos as it has been
observed here and the effects on the full quantum model, we must examine the

relationship between the semiclassical model and the quantum model in the non-

chaotic region of parameter space.
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CHAPTER 3

QUASICLASSICAL STATES AND THE QUANTUM
MODEL

In Chapter 2 we pointed out that for a semiclassical treatment to be valid, the
atomic and field portions of the wave function must factorize. Assuming that they
factorize and then treating the expectation values of the field variables as dynamical
variables makes the approximation semiclassical. States which actually do remain
approximately factorizable have been termed quasiclassical. A quasiclassical state will
have a relatively well defined field amplitude and phase. If An is the uncertainty in the
photon number of the state and A¢ is the uncertainty in the field phase, then we require
An/it«1 and Ag«1. These conditions can be satisfied by coherent states with
sufficiently large 77 and squeezed states in which the squeezing is not too large. In this
work we will consider only initial conditions which involve coherent states. However,
the fact that the approximation remains good for a range of times, even though the
field does not remain in a coherent state after =0, demonstrates the broader
applicability of the technique.

In Sec. 1 of this chapter we will first give a general development of
quasiclassical states and show how the plus and minus branches of the Autler-Townes
solutions relate to the quasiclassical states. In Section 2 we will examine the evolution
of the field and show how the plus and minus branches may be used to obtain the
evolution for arbitrary initial states. Section 3 will give an alternate development using

just the eigenstates of the quantum model.
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3.1 Development of Quasiclassical States

Let a quantum harmonic oscillator interact with an atomic system. If the
oscillator is sufficiently energetic, the atom cannot strongly influence the total energy
of the oscillator. As mentioned in Chapter 2, we desire to find states such that

['Y(0)) =| p(0))®|a) > |¥ (1)) =| y(1)) B|D(1)), (.1
(where |¥(?)) is the total wavefunction, |y(7)) is the atomic part and |®(?)) is the field
part) for times ~0. The atomic system, which could be a two- or three-level system
or even a few such systems, has a state space of dimension N. There can then be no
more than N quasiclassical trajectories, as follows: Given N quasiclassical trajectories,
any other initial condition can be written as a linear combination of the N linearly
independent (though perhaps not orthogonal) trajectories. The new initial condition
will evolve according to the linear combination of N wavefunctions of the form (3.1).
This linear combination will not be generally factorizable.

Classically, if two interacting systems, such as the atom and the field, exchange
little energy, we expect the smaller system to have little effect on the larger system.
But quantum mechanically the systems can interact in a manner which need not involve
substantial energy exchange, through entanglement. By becoming entangled, the
smaller system can exert significant influence on the larger system by, for example,
causing the larger system to evolve into Schrodinger cat states. By avoiding
entanglement (i.e. remaining pure or factorizable), quasiclassical states avoid this
quantum mechanical phenomenon and thus the oscillator will be least affected. We
expect the oscillations to be approximately constant, but we will allow for a slight
modification of the frequency @ to @’ (as we observed in Chap. 2). In order for the
system to remain factorizable, we will require that at the end of each period of the

oscillator, the atomic system must return to very near its initial state, up to an overall
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phase factor. To put it another way,

I w.(t= 27[/60')) = ei”‘(z”/“")' !//C(O)>. (3.2)

Taking the form of Eq. 3.2 along with the assumption the oscillator is not

significantly disturbed leads naturally to the application of Floquet’s theorem to find
the quasiclassical states. Making the approximation that the oscillator is unaffected
(other than the shift in frequency) leads to the prescribed field Hamiltonian

H=1hw,o,+2hgVno, cosw'l, (3.3)
which is the Autler-Townes Hamiltonian introduced in Sect 1.1. Now the connection
between the Autler-Townes states and the quasiclassical states is clear: the
quasiclassical states must have Floquet-like behavior, while the Autler-Townes states
exactly solve a Floquet Hamiltonian. A comparison between the Autler-Townes
trajectories for #7=32,6=0.141 (g=0.05) and the numerical integration of the fully
quantized system is shown in Fig. 18. The atom starts on the Autler-Townes plus
branch, while in this figure and elsewhere unless noted otherwise, the fully quantized
field starts in a coherent state with =77 . The interaction picture, in which the axis
system of the Bloch sphere rotates at the frequency ), is useful for small £ to observe
the interaction-induced detuning. The azimuth angle traversed by a particular point
along the teardrop-shaped trajectory gives the total drift (w™-w)?. For large ¢, the
trajectories become complicated (recall Fig. 6) and the interaction picture is not
particularly useful. In this case, though, the interaction picture demonstrates the
similarity of the detuned Autler-Townes model and the fully quantized model,
particularly once the quantum model settles down. The total time shown is
approximately /=200 (in units with @ scaled to 1) or about 32 cycles. The first 5
cycles or so show some differences between the models, but after that time they are
virtually identical. The agreement is remarkable, considering the difference in

computations required: the quantum model requires integration of nearly

56




@ e ®)

Figure 18. Comparison of Autler-Townes model with detuning and quantum model.
In all plots £=0.141, 7=32, g=0.05. (a) Autler-Townes model, Schrodinger picture.

(b) Autler-Townes model, interaction picture (rotating with angular frequency ). (c)

and (d) are the results for the fully quantized model.
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250 equations, while the Autler-Townes results can be obtained by numerically
integrating 3 equations or using the closed form expression given by Eq. 2.9, together
with the A’s and B’s from Ref. 9. Agreement improves with larger 77, where the

quantum model requires even more effort (roughly 4-(17 +5i ) equations).

The factorization into an atomic part and a field part holds for a fairly long time,
as shown by the atomic state purity in Fig. 19. The purity is measured by the Tr(p,2),
where p, = Trg4(p) and p is the density operator. A purity of 1 indicates a pure
state, while the minimum purity for a two level system is 0.5 and indicates a maximally
entangled system. In Fig. 19 the purity remains above 0.98 until about t=400. This
time is about twice the time shown in Fig. 18. To fully appreciate the value of the
quasiclassical states, consider the trajectories generated by starting in the state |a)

instead of |y,). Figure 20a,b shows the Schrodinger picture evolution of the

semiclassical system (2.5) and the fully quantized system for the same parameters as in
Fig. 18, but with the atom initially in the upper state. The difference in the two
trajectories is immediately obvious as the well-known “collapse” of the wavefunction
occurs.26,38.4042 The collapse is even more apparent in Fig. 20c, where the purity
rapidly drops off. The approximation of factorization, therefore, is seen to
dramatically fail for states which are not near the quasiclassical states. The collapse of
a general state is a result of the field splitting into two parts,43:44 one associated with
the plus branch and one associated with the minus branch. Figure 21 shows the
quasiprobability Q distribution at the beginning and end of the trajectories shown in
Fig. 20. The Q distribution is defined as

a) =(a|p;.| @) (3.4)

where pr;.1q is obtained from the total density operator, p, by tracing over the atomic

states. The variable a represents the complex amplitude of a coherent state. This
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Figure 19. Atomic state purity for the same initial conditions as Fig. 18, but

for a longer time interval
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Figure 20. Comparison of the semiclassical (a) and fully quantized (b) systems

for the same parameters as Fig. 18, but with the atom starting from the state |a).

(c) Purity as a function of time for the fully quantized model.
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figure is in the interaction picture, rotating with angular frequency —@w. Thus the plus
branch portion of the field, which rotates with @-@>0 is the lower peak (rotating
clockwise), while the minus branch portion of the field is the upper peak (rotating
counter-clockwise). Referring to Fig. 7, one can see the state |a), which has 6=0, is
closer to the minus branch than the plus branch. As a result, the minus branch portion
of the field has a greater weight, and so the peak is bigger (has more contours) in Fig.
21. This association is demonstrated in Fig. 22, where the atom starts on the plus
branch and only one peak is observed, rotating clockwise in the interaction picture.
We will discuss this further in Sec. 3.2.

The location of the peak of the Q distribution approximately gives the value of
the complex field phasor discussed at the end of Sec. 2.2. Using Fig. 22, a~3.76-
4.32i. This yields a detuning of 0.855/201.1~ 0.0043 (please recall in numerical
calculations, time has been scaled so that w=1). The value for the interaction induced
detuning given by Eq. 2.14 is 0.00427, in complete agreement at this level of
precision. Greater precision can be obtained by calculating the expectation values of
the operators a; and a,, the real and imaginary parts of the boson annihilation
operator, and using the same procedure for constructing the complex field phasor.
This technique yields a value for the detuning of 0.00422, which is in remarkable
agreement considering the differences in the models. In fact, this technique provides
good agreement over a fairly broad range of values for £ Letting the product of
thedetuning and the average photon number be given by &7, Figure 23 plots & versus
€ The solid line gives the value from Eq. 2.14, while the squares and circles give the
values calculated from the quantum model for 77=32 and 64, respectively. This figure
demonstrates the improved agreement which can be obtained by increasing 7.

Incidentally, if this procedure was used to calculate the detuning in the quantum model
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Figure 22. ( distribution for the initial conditions of Fig. 18,

showing the plus branch field moving counter-clockwise in the interaction

picture.
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Figure 23. Comparison of the interaction induced detuning from the
semiclassical model (Eq. 2.14) and the fully quantum model along the plus

branch. Agreement improves with increase 77.
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for a situation like that in Fig. 20, the value would be almost zero, since the
contributions from the two peaks would nearly cancel each other.

Like the correspondence between the Autler-Townes model and the
semiclassical model, the correspondence between the quasiclassical states and the
semiclassical model improves with increasing 71. Using Eq. 2.4, the expansion of x
and a; as complex exponentials, and Ref. 38 for the series expansion of the Autler-

Townes 4 and B coefTicients in & we find that

e 02)
1 ﬁ -

Therefore, the third and higher harmonics can be made negligible given sufficiently

(3.5)

large n. Thus, the agreement between the quantum solution along a particular branch
and the Autler-Townes Floquet eigenstates (or the semiclassical solution) can be made
as close as desired for fixed ¢ by increasing 77. On the other hand, by fixing 77, the

agreement deteriorates with increasing ¢.

3.2 Evolution of the Field and of Arbitrary Initial States

Up to this point, almost all the attention has been focused upon the evolution of
the atom. Now we shall consider the evolution of the field for the quantum model.
The semiclassical model gives expectation values for the field quadratures a; and a,
along a single branch; however, we need more information about the quantum field
state in order to calculate the evolution of linear combinations of the two branches.

To find how the quantum field evolves, assume a factorized form

|‘I’+ (t)) :| v, (1))®|<D+(t)) for the total wavefunction and insert it into the time-

dependent Schrodinger Equation:

L. 0)ele, @) =+l . )@, 1) (3.6)
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Now project out the portion which follows along the atomic quasiclassical trajectory

(. O S(v.w)e0,0)- ((%(I)Ig—l v, (r)))lmxr))%lax )

i
= (. Oy, O)|0. () (3.7)

On the RHS of the first line of Eq. 3.7, the derivative w.r.t. time of the atomic state
appears. This derivative is given by the action of the Floquet Hamiltonian (including

the interaction induced detuning)

i

o
(0.1 Z1.0))=- v Ol 68
Making this substitution in Eq. 3.7, we obtain an equation for the evolution of the field
5 .
210, (0) = (. (H - Hr Yy, )@, (1) (3.9)
and then substitute // and H 4 from Eq. 1.1 and Eq. 1.2 to get
J : t t 7 ' |
—,;](D* (t)) = —I[axl a+gx, (t)(a +at —2+/i cosw I)][ D, (t)). (3.10)
(%

In this manner the technique has come full circle: We started by assuming

factorization and found the atomic evolution using the expectation values for the field

in a coherent state |@) with a = Jie™ . Then we used the expectation values for the

atom and found the evolution of the field.
The full solution to Eq. 3.10 is a coherent state times a phase factor and is given

in Ref. 38. Here we note only that to lowest order in g/i7, the complex amplitude of

the coherent state is

a,(f)= ﬁe'i“’"l:l+0(§)]. (3.11)

n

Similar results are found for the minus branch by replacing the plus branch expectation

values with those for the minus branch and using the value of @’ for the minus branch.
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Similar analysis for quasiclassical states using the rotating wave approximation
(RWA) has shown the field states do not remain coherent for very long times, but
rather exhibit squeezing.1945 In fact, inspection of Fig. 22 shows the state is no longer
coherent, but has increased phase uncertainty. However, numerical calculations show
the coherent state approximation to be adequate for short enough times (see below).
As discussed at the beginning of this chapter, the existence of quasiclassical states does
not depend on the precise form of the field, so long as the phase and amplitude remain
fairly well defined.

Having an expression for the field evolution along each branch, we can now
move on to the evolution of the field and atom for an arbitrary initial atomic state.
Since the two branches at /=0 are orthogonal, any atomic state can be written as a

linear superposition of the two branches. Using the same form as in Eq. 2.9, we can

write

_ Y i oV
| ‘P(O)> = (cos;l v, (O)) +e" sin EI v (O))) ®l a(0)>
) 3.12
- cosi}:l z//+(1)>ld>+(l)>+e'¢sin§| w_(l))ld)_(t» (3.12)
The detuning for each branch is opposite in sign, so the field states drift apart until
they become approximately orthogonal. In terms of the Q distribution, the states are
orthogonal when the two peaks are well separated, i.e., they do not overlap. The

width of the distribution O(a) for a coherent state [’} is independent of the complex

amplitude o', and is approximately equal to unity. However, from the origin, the angle

subtended by the distribution (i.e., the phase uncertainty) falls as 1/ la’| =1/ Jir.

Therefore, the two branches will be roughly separated at a time 7., such that

|o'— wlt, = 1/ . Use of Eq. 2.14 for the detuning yields

w, =Y 2 (3.13)
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where x, is amplitude of the first term in the cosine expansion (2.12) of x(¢) along one
of the branches. This time is the collapse time, referring to the collapse of the
wavefunction mentioned at the beginning of Sect 3.1. It is called a collapse because in
the RWA, after the collapse the Rabi oscillations in the inversion cease. However, the
collapse is actually the collapse of the interference terms between the field states along
each branch. For a fixed value of &, which fixes the value of x, the time to achieve
collapse grows with 7. For the case shown in Fig. 18, Eq. 3.13 yields wr,=41.2,
which agrees well with the time of the collapse shown in Fig. 20. Alternatively, for
fixed g, the collapse time depends only indirectly upon # (through x;). This result is
comparable to the result for the RWA, for which ¢, is independent of 7. After the
collapse occurs, the expectation values of most quantities are given by a weighted
average along each branch separately (with weights cos2/2 and sin2y/2 for the plus
and minus branches, respectively).

Finally, the two field states will overlap as la)' - a)ltR = . This overlap will

result in a revival of interference, which will occur at

AT 2adT G.14)
e (/@)
This result agrees with the work done by Zaheer and Zubairy*. For g = l/ 5410,

ol

11=10, £=0.1, they show in their Fig. 2 a revival which peaks near 2gr=40, or wt=316.
Equation 3.14 yields a value of wtp=319. However, this small value of ¢ is insufficient
to distinguish these results from the RWA, for which the revival time is given by Eq.
3.14 with x; set equal to unity. The RWA yields for these parameters wfp=314. Using
a larger value of £=0.3 and 1 =36, Fig. 24 shows a rather indistinct revival occurring in
the vicinity of wf=500. For these values, Eq. 3.14 yields a revival time of wp=491,
while the RWA yields wfp=377, in sharp contrast. In order to better determine when

the revival occurs, Fig. 25 shows the contribution to the inversion from just the
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Figure 24. Inversion as a function of time for a state which starts as a linear

600

combination of |y, (0)) and |y.(0)) with equal weights, with £=0.3 and 77=36. A rather

indistinct revival can be seen around =500,
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Figure 25. Interference terms contributing to atomic inversion (see text). The large

oscillations near t=500 mark a revival.
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Figure 26. Q distribution for the plus (solid lines) and minus (dotted lines) branches for

1m=36, £0.3 at wr=0, 300, and 500. As the branches overlap, the revival occurs. The

dashed line indicates a=6=\/;:) .
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interference terms. The interference contributions can be found by performing three

separate numerical integrations of the quantum model. Let (z,) be the expectation
value given by the evolution of |y, (1)), (z.) from |y.(£)), and {z) from the linear
combination of the two (as already shown in Fig. 24). The interference terms will then

be equal to :

1:(2—*>;£—(z). (3.15)

This quantity is plotted in Fig. 25, and the revival of the interference between the two
branches is clearly evident, becoming largest very close to /=500. Now it is apparent
that the results coming from the Floquet eigenstates agree well with the full quantum
model.

The indefinite revival demonstrates that the coherent state approximation is
beginning to fail for this large time. If the field remained in a coherent state, the
revival would last as short a time as the collapse, but Fig. 25 shows that it happens
over a substantially longer time. Figure 26 shows how the Q distributions for the plus
and minus branches individually evolve. There is little change in the radial profile,
indicating the amplitude of the coherent state and its uncertainty do not change much.
However, the distribution becomes very elongated, corresponding to an increased
uncertainty in the phase. This is suggestive of the squeezing seen in the RWA 45
Finally, Fig. 27 shows the evolution of the Q distribution for a linear combination of
plus and minus branches. Comparison of Figs. 26 and 27 shows the Q distribution for
the linear combination evolves very much like the sum of the Q distributions for the
two branches, which further reinforces the picture of the quasiclassical states.

An attempt to improve the accuracy of the coherent state approximation at times
near the revival time by increasing 77 cannot be successful: the revival time increases

linearly with 7 for fixed &, while the discrepancy with the quasiclassical states (given
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Figure 27. Q distribution for an equally weighted linear combination of plus and minus

branches for the same parameters and times as Fig. 26.
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by Eq. 3.5) decreases only as Un . Although the discrepancy given by Eq. 3.5 is not
necessarily directly connected to the failure of the coherent state approximation, it
gives an upper bound to the agreement which can be expected between the
quasiclassical states and the full quantum model.

Having considered some of the limitations of the use of the quasiclassical states,
now let us explore a concrete example of their use. For simplicity, consider the small &
limit, so that the series expansion of A’s, B’s, and probability amplitudes (all given in
Ref. 38) can be truncated to first order in & A particularly useful state for

consideration is the upper atomic energy eigenstate, |a). It has been widely used as an
initial condition by various authors, and the factorization approximation used to

develop the semiclassical model fails dramatically from this state, as already seen.

Following Ref. 38, the state |a) is formed by the linear combination

|a)=71~2—(1-§)| y/+(0))+~\}?(l+§)' w_(0)). (3.16)

Now use the probability amplitudes in Eq. 3.16, along with Eq. 1.3 for the plus and
minus branches, to form
1 1
#0) = (1= £ v M. )+ (1+£ v (- (1)
=%{(l—é‘eizm")la)+[(l—€)cim" + w—im.l],b)}e—iglﬁ-—imﬂlq)# (1)) (3.17)

+%{(e"""-‘ + ae”’-')]a) + [1 +e— gt ]lb}}e’g’ﬁ”’“’z] D (t))

3

with @, the detuned frequency for the appropriate branch, which is

£
ot g =wt—

2.7 i

n

a)i
to first order in & Although the form of |®,(/)) is somewhat complicated, for times

smaller than the revival time and g/n sufficiently small, it simplifies to the following

product of coherent state and phase factor
I(Di) = eiigt\/ﬁlz ﬁeiim!l) (318)
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Typically plots of the inversion, z(f), are shown in the literature. To obtain z(¥),

take the expectation value of o, for the state |'¥(f)). Making these substitutions and

performing straightforward algebraic manipulation yields for the inversion when

starting from the state [a)
(1) = [cos(Zgﬁt)—2£sin(2a)t)sin(zg‘/;—jt)]emgz,z/z
(3.19a)
, (gt
+2esin{2ax ) sin| —=
eetsnl )

or, using the scaled time with o=1,

z(t) =[cos{4et) - 2&sin(21) sin(4¢r)]e """ (3.19b)

+2¢&sin(2¢) sin(zjgt)

7

The first form shows that as &0, the RWA result emerges: Rabi oscillations at
frequency 2g\/§ modulated by a Gaussian collapse envelope. The second form is
useful to see how the various quantities scale with fixed £ as 7 is varied. In either
equation, the interference between the two branches is responsible for the terms in
square brackets (which vanish after the collapse time). This result does not show any
revivals because of the approximations made in obtaining Eq. 3.18. However, it does
show the zero in the oscillations at one-half the revival time, which can be observed in
Fig. 24. A comparison between the results of numerically integrating the full quantum
model and Eq. 3.19b is shown in Fig. 28. The trajectories in this figure use the same
parameters as in Fig. 18; £=0.141, g=0.05, n=32. Even for a value of ¢ this large, the
agreement is quite good.

So far in this chapter we have seen how the Floquet eigenstates which come
from the Autler-Townes model are connected to quasiclassical states which remain

factorizable for long times. We then found that any state could be written as a linear
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Figure 28. Comparison of population inversion vs. time for exact numerical

results and approximation given by Eq. 3.19 for an atom initially in state |@) with

parameters given in Fig. 2.18.
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combination of the plus and minus branches and its evolution could then be calculated
in a straightforward manner for times which approach the revival time. However,
there is an additional manner in which these special states can be derived for the

quantum system, without any reference to the semiclassical system.

3.3 Quasiclassical States From Eigenvectors of the Hamiltonian

The motivation for finding the quasiclassical states developed from a need to
find states which closely matched the evolution of the semiclassical system. However,
it 1s also possible to find such states using an approximate treatment of the
eigenvectors of the Hamiltonian in Eq. 1.1. Graham and Héhnerbach published a
solution for the eigenvectors to zeroth order and the eigenvalues correct to first
order.26 Here we present a similar, though somewhat different technique to obtain the

eigenvalues and eigenvectors correct to first order.
The term to be treated perturbatively is the atomic energy. For field states

which are built primarily from a limited range of field eigenstates |n), such as coherent

states, a ~a' ~/iT. Ifthe coupling and the average photon number are not too small,

such that g+/77 > T, or £> -, the interaction term will be larger than the atomic
energy. Dropping the atomic energy term from Eq. 1.1 we obtain the unperturbed

Hamiltonian

H,= ha)afa+l‘1go;(a +a*). (3.20)

Defining the atomic states
1
|+x) = —(|a)%|5)) (3.21)

which are the eigenstates of o, with eigenvalue £1 (and hence lie at x=%1 on the Bloch

sphere), we can write for the eigenstates of H,
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[fzwa"a + hgax(a +a*)]| ix)l (D,,i> = [h(oa*a + hg(a + aT)]]J_rx>| D,, )
- £, Jx)fo,.)

(3.22)

with [®,,) the field state, which is still to be determined. Now replace a and at with

new canonical annihilation and creation operators a=atg/w and a't=at+g/w, with the

sign chosen to match the sign of the atomic state. Upon substitution the eigenvalue

equation becomes, (after projecting out the atomic part)

[hau;*a; —hw(ﬁ)-}@ni) - E,
(4]

Another way to write the new annihilation operator is a, '=D1(xg/w)aD(+g/w), where

®,.). (3.23)

n

D(a) is the displacement operator which generates the coherent state |a) when applied

to the vacuum state. Using this definition, Eq. 3.23 can be written

l:thf(i—g)aIaiD(i—g—)— I‘za)(—g—) }] (D"t) =k,
0] @ ®

Now the eigenstates can be determined by inspection. If |n) is a number state, then

®,.) (3.24)

nx

|¥,.)=|tx)®D' (if—)]n) | (3.25)
@

along with the corresponding eigenvalues

L, =nho- fm)(ﬁ)- (3.26)
1)
which are doubly degenerate, since they are independent of the sign of the state. First
order degenerate perturbation theory requires that we calculate the matrix elements of
the perturbation within each degenerate subspace. Diagonalization of the resulting

matrix yields the zeroth order eigenvectors and the first order correction to the

eigenvalues.47 In this instance,
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o (15l +) (sl |-folof £ (- £ )

Sy -, +x)<n|[)(_-f-))uf(:f_))|n) (ox

2 (3.27)
(-x
Using Eq. 3.21, it is straightforward to evaluate the atomic state matrix elements. The

a,|-x)

diagonal elements are both zero, and the atomic part of the off-diagonal elements is
equal to 1. The field part is more difficult, but de Oliveira, ef al., have reported
thoroughly on the displaced number states.® The form of the displacement operator
D(a)=exp(aat-a"a) immediately shows that Dt(a)=D(-a). From Ref 48, then, we

obtain
(nlD*(gf)l =e ) L[{—i—)) (3.28)

where L, are the Laguerre polynomials. Since this quantity is real valued, the matrix

elements are equal. The eigenvalues correct to first order are then

E, - nw[n—(ﬁ) L1, Lﬂ({&)ﬂ (3.29)
W 2 w

and the zeroth order eigenvectors are

RIRE 71_5[]+x)®1)"(—f;)ln)il—x)® D*(—g)j n)J. (3.30)
One may wonder what a displaced number state looks like. Reference 48 focuses on
states with a large displacement and small photon number, while the opposite is
needed here. Briefly, for large n and fairly small g/, the photon number probability
distribution is narrow and centered near n. As g/w increases, oscillations in the
distribution develop and it becomes wider, as demonstrated in Fig. 29. Analytically,
the average photon number is

(n) =n +(—g—)~ (3.31)

@
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Figure 29. Photon number distribution for a displaced number state with 77=36 and

glw=(a) 0.1, (b) 0.2, and (c) 0.5.

80




0.6 I T I T

>(>(x)(
o XKKKKXKXXXK
041 %o XXX X x x
%06 KA X
X
XXX XX X ¢

OFt++t+t+rttrtrrtrrtrttttttttrtrtrtrrirrrtrttt+tt+ 4

Le]
00000009
0.2~ ooo°oooooo°°°°° N
000990
000000°° K XXX XXXXXX
0000000 )()(XK’O()(XKKXXX
- 09 X X XX .
04 40 xxxx*““*‘xx
x X XXXX | ! 1
0 10 20 30 40 50
° “Exact”
*  Zeroth order
X First order
0.4¢ T T T T
(b)
X
OZL _
“l x
< oQQQ“&&é’(X)(X
X Qsay
° ox* ooéx*x oQQQQQQQQQ )
X °x Coix ofR
O o ok oogxx o°$2x ]
O L L T UG\ I SR
X 0%x%03x
o oX 0OxX ©%0X%x
X oX PR o¥x ”
o ox oOx* 83
02 " x oX oTX B e @ &
88 a2 ¥R
3%
Ox
0.4/ N
| | | !
0 10 20 30 40 50
¢ “Exact”

+  Zeroth order

X First order
Figure 30. Eigenvalues from numerical diagonalization of Hamiltonian (“exact™), Eq.
3.26 (zeroth order), and Eq. 3.29 (first order) for g/w of (a) 0.05 and (b) 0.25. The
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and the uncertainty in the average photon number is
<(An)2> —(2n+ 1)(5)-. (3.32)
1)

Figure 30 compares the zeroth and first order eigenvalues to the results obtained
by numerical diagonalizaton for two different values of g/, 0.05 and 0.25. To
facilitate comparison, the values actually plotted are -,,-n. As one would expect from
the perturbative calculation, the agreement improves for larger » and g, as hwy/2
becomes less significant compared to the other terms in 4. In addition, note how the
eigenvalues naturally form two sets which are almost smooth functions of n. These
two sets are the eigenvalues corresponding (in the appropriate limit) to the + signs in
Eq. 3.29.

The standard result for first order correction to the eigenvectors is, in the

notation used here,

¥ |H
n) ”Iz"lq’,ﬁe))w (3.33)

Using the properties of the displaced number states and a substantial amount of

algebra, we obtain the first order correction

)—Zgl/a)l ) 2 n-m . B lir(_l)n—m
po\_ € (0) fﬂ(_g) o3 )T
"i> 4 ,,;, lP""> n\ o " (‘" )( Y n-m

(3.34)

P )2 )y

The factorials keep the distribution narrow, and the amplitudes are somewhat

r=t

symmetrical about the unperturbed state. To use these states in calculation, the zeroth
order eigenstates should be expressed in terms of the atomic eigenstates and photon
number states. Although not conceptually difficult, the calculation is cumbersome and

the final outcome not particularly informative, so it will not be included. However, the
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Figure 31. Comparison of zeroth and first order eigenvectors, n=128+ and

g/=0.17678 (1/N32). Probability expressed on the basis of the atomic energy eigenstates

and photon number states. (a) Upper atomic state. (b) Lower atomic state.
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results are shown in Fig. 31, where the probabilities for the state |a,n) and |b,n) (i.e.,
the atomic energy eigenstate and photon number state) are shown. The calculations
for this figure are based on eigenstate |\¥,,g,), with g/@&=0.17678.

Let us now return to the goal at hand, which was to find the approximately
factorizable states using the eigenstates of /. Suppose we consider the outer product
of an atomic state given by the polar angle &in the Bloch sphere (let the azimuth angle
be zero) and a coherent state with amplitude a = 7, which shall be denoted |6, Vi ).
In general, this state will be described by a distribution of eigenstates with both

positive and negative parity. The parity operator of Ref. 26,

1 o, ]

P:e’{ 2 2) (3.35)
is easily seen to have as eigenvectors the zeroth order eigenvectors of the unperturbed

Hamiltonian (3.20). Furthermore, P commutes with the transformed Hamiltonian
H:hw[a'fa'+ o, - (g/fo)z]. (3.36)

The eigenvalues of like parity depend approximately linearly upon n over a
restricted range of # (such as used to build a coherent state) as shown in Fig 30. The

state Iaﬁ ) is composed of a superposition of eigenstates, which will have time

dependence

|2(1))=2C ™" W,). (3.37)

This can be expressed as

|ly(t)>:ei5,,,r/»z Cn+e—i(E,,,-Ei,)!/hl )+e’E"”"ZC )—.(E -E,. :/h! n—)'(3'38)

Suppose the initial state has been chosen so that the C,,_ coefficients are small and can
be neglected. Now by expanding £, as a Taylor series about #=#, to the extent that

E,. depends linearly on n, we can write
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’\{1(,)) _ e:E,.,t/h{Z C, exp{—;—g—;ll ()1—[7)[}‘ Y., )} (3.39)

b
n+

a

. Of

This result is similar in form to the Floquet state (3.2), with ho' =

course, multiples of @’ can be shifted from the Floquet exponent to within the
summation without effect in order to place the Floquet exponent in the desired range.
It is important that the C,,_ coefficients can be neglected, since in the corresponding
summation for the minus states the Floquet exponent and @’ would be different.
Compare Fig. 32, which shows the variation in 24,/ using the eigenvalues obtained
from the first order perturbation expression given by Eq. 3.29, to Fig. 5. In the
quantum case there is a slight dependence upon », but otherwise the agreement is quite
good. Now consider the inner product between the previously mentioned state

|6,4/77 ) and the eigenstate |'¥,.):

6, \/E)lz (3.40)

Finding the angle € which minimizes A will produce a state which minimizes the

A= l(\Pﬁ_

presence of the minus branch (i.e., the C,_’s) and therefore remains approximately
factorizable. Figure 33 shows the best value of & for various values of £. Two sets of
eigenvectors with different values of g/ were used for the calculation, 0.17678 and
0.25. The agreement with Fig. 7 is striking, with the exception of small £&. With these
values of g/w, the small & region requires such small values of 77 as to make a
quasiclassical approximation invalid. The figure shows the agreement improves with
decreasing g/w.

Of course, some presence of the “wrong” or undesired branch is unavoidable in
building a coherent state. However, the choice of 8 given above reduces it to a

minimum.
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We now have found two different techniques, the one just discussed and the use
of Floquet eigenstates, which lead to the same quasiclassical states. These states can
be combined in a manner which leads to accurate prediction of the full quantum model.
Let us now use these results with the understanding of chaos in the semiclassical

model gained in Chap. 2 and investigate the impact of semiclassical chaos on the

quantum model.
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Figure 32. Floquet exponent from + state eigenvalues using given values of

n. The first order perturbation result of Eq. 3.29 has been employed here.
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Figure 33. Initial point for approximately factorizable states calculated from

eigenstates. Solid line corresponds to g/w=0.17678, dotted line to g/w=0.25.
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CHAPTER 4

CHAOS AND THE QUANTUM MODEL

Finally we are prepared to discuss the relationship between semiclassical chaos
and the behavior of the fully quantized system. Section 1.3 introduced some of the
comparisons between semiclassical and quantum models done by other authors. In
Sect 4.1 we will focus on a particular approach, examination of purity and uncertainty.
This approach has been used extensively by the authors of Ref. 19-21 and we will
show some of the pitfalls which may trap the unwary. In addition, some problematic
results of Graham and Héhnerbach will be discussed. At last, this work will close with
Sec. 4.2, in which the effects of using higher values of angular momentum in the

atomic system are considered.

4.1 Impact of Semiclassical Chaos

Grigolini, ef al. have published a series of papers!?-2! on investigations of the
spin-boson system, both with and without the RWA. Their approach has been to
compare the results of the semiclassical model to the quantum model and attempt to
find correlations between the onset of chaos and changes in dynamical quantities,
much as we will do here. In studying the semiclassical model, they generally have not
focused on individual trajectories, but performed averages over an initial distribution
which satisfies the quantum uncertainty principle. For the quantum model, they
determine the evolution using the Wigner pseudoprobability distribution and
Liouvillian operators. They separate the Liouvillian into two parts, L) and Logp. Ly

yields the same results as the semiclassical model, Eq. 2.4. Lgp (Quantization
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Generating Diffusion) is the remainder of the quantum Liouville operator after
removing L. For comparisons, they take expectation values from the semiclassical
distribution and from the corresponding quantum distribution. This is a rather novel
approach and holds some promise for understanding the relationship between the two
systems, but their work has a few shortcomings which cast doubt on their conclusions.
They generally consider evolution of the system from the atom in the lower energy
eigenstate, and do not fully account for the effects of the two quasiclassical states
(although they do mention one effect, the splitting of the field along the plus and minus
branches). Furthermore, they use the RWA results as a basis for comparison, and any
departures from the RWA results they attribute to semiclassical chaos. They fail to
recognize the importance of initial conditions in the evolution of the quantum system,
as we shall see below.

An example will serve to demonstrate the type of problem which can arise if the
presence and behavior of the two branches is not recognized. In Ref. 20 they suggest
there exists a qualitative difference in the dynamics of the RWA and non-RWA
quantum models. They claim this difference leads to a dramatic failure of the RWA
while providing good agreement between the quantum and semiclassical non-RWA
results. Figure 3 of Ref. 20 plots z(¢) for the non-RWA semiclassical model and an
approximation they call the Wigner recipe, while in Fig. 4 they do the same for the
RWA. Parameters as defined here are g=0.0898, w=a),, 7=300, and £=0.778, starting

from the lower energy eigenstate |b), for a time of wt=167. The Wigner recipe

consists of averaging the results of the numerical integration of the semiclassical
equations (2.4) over an initial Wigner distribution for a coherent state, and provides
reasonably good agreement with the full quantum model for the calculations shown.
In their Fig. 4, the RWA shows a collapse occurring about /=87, while the non-RWA

quantum calculation shows no collapse and matches the semiclassical model very well.
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They attribute this difference to a failure in the RWA. It is more correct, however, to
attribute it to comparing two different initial conditions. For the given values of the

parameters, |y, (0)) is almost coincident with |5), and so no collapse is expected and

the semiclassical model should provide good agreement. However, in the RWA, the

state [b) is formed by an equally weighted linear combination of the plus and minus

branches, thus the collapse is expected. A more appropriate choice would be to
compare the results along the plus branch in both instances, in which case the RWA
would show no collapse and give good agreement with the semiclassical model.
Alternatively, one could compare the same equally weighted linear combination of plus
and minus branches in the non-RWA as used in RWA. The results of this calculation
are shown in Fig. 34. It shows a collapse in time of about 7,=60, compared to 7,=58.5
given by Eq. 3.13. Thus, the main difference between the RWA and non-RWA is the
length of 7, a small difference which is well understood from the material in Chap. 3.

Now let us turn our attention to Ref. 21. In this article they develop the
Liouvillian dynamics and separate the effects of classical and quantum components. In
addition, they use the semiclassical equations of motion and calculate the Lyapunov
exponents using the method of Ref. 37, as was done here. They identify a threshold
for chaos in which the largest Lyapunov exponent increases to almost unity from about
0.1. They refer to this region of very large Lyapunov exponent as the chaotic region,
ignoring the region with smaller Lyapunov exponents. This is not typical of the work
in this field, where, for example, Ref. 15 identifies a region as chaotic for a Lyapunov
exponent as small as 0.087. Likewise, the Hénon-Heiles system was considered
chaotic by the authors of Ref. 37 with a Lyapunov exponent of approximately 0.08.
The threshold Grigolini, ef al. identified for highly chaotic behavior occurs at

resonance with g=0.5 and 7 =5. Because of the small photon number, their
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Figure 34. Demonstration of collapse for parameters of Figs. 3 and 4 of Ref. 20.

(a) Comparison of quantum and semiclassical results. (b) Plot of purity vs. time.




conclusions cannot be directly applied to this work, since such a small photon number
precludes the quasiclassical approximation from applying. Nonetheless, we will
continue and attempt to test the extension of their work into the parameter space

applicable here.

As a test for the effect of semiclassical chaos on the quantum system, they use
the entropy of the atom. Phoenix and Knight present a method for finding the entropy
using p,;, the atomic reduced density operator.4? Given the matrix elements pg,,,, o,

and py,, the eigenvalues of p,, are

a, = {1t (o —pu) + 0L | (4.1)
and the entropy is

Slp,)=—(a,na, +a_Ina_). (4.2)
Using the expression for the purity

P=p,+p,+2lpal (4.3)

it is straightforward to relate the entropy to the purity:

S(P)==3(1+v2P=1)m[4(1+2P=1)]
—%(1—Jﬁ—_1)ln[g(1—\/27——1)]

(4.4)

In a non-chaotic region of the parameter space, far off-resonance, Grigolini, ef
al. show that the entropy reaches its maximum value (In 2) during the collapse region,
and returns briefly to zero during revivals. They then claim that for the chaotic system
the disappearance of the revivals in the quantum model is a result of the chaos in the
semiclassical model. The absence of revivals is undeniable, but to identify
semiclassical chaos as the cause is rather speculative, as we will show momentarily.

Let us turn now to Ref. 19, which reviews the material in the previous articles

and extends it somewhat. Specifically, they add a discussion of the entropy growth
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and irreversibility for an initial photon number (Fock) state and they relate the growth
of field uncertainty to semiclassical chaos.

The entropy growth starting from a number state is included in order to compare
with results from the RWA. The RWA is manifestly non-chaotic in the semiclassical
model, having only two degrees of freedom. In spite of this fact, it shows an overall
increase in the entropy with time if the field is initially in a coherent state.4? The
increase in entropy is attributed in Ref. 19 to the coherent state mimicking a heat bath
with an infinite number of degrees of freedom.>® The collapses result from the many

different frequencies, one for each eigenstate |®,) of the oscillator. Furthermore,

because the frequencies increase as Jn , rather than integer n, the revivals are not
perfect. To circumvent the irreversibility and consequent increase in entropy from
starting with a coherent state, in Ref. 19 they calculate the entropy with the field
starting in a number state. In the RWA, if the field begins in a number state the system
evolves reversibly, while in the non-RWA it does not. In Ref. 19, Fig. 3 uses the
atomic entropy to show the increasing irreversibility for five different values of g, with
the field starting in a number state and the atom starting in the lower energy
eigenstate. They claim this behavior supports their conclusion that quantum
irreversibility is a signature of semiclassical chaos. However, the difference between
the behavior in the RWA and non-RWA can better be attributed to differences in the

eigenstates of the RWA and non-RWA Hamiltonians. The eigenstates of the RWA

Hamiltonian can be written

"I’:;W")z%([a)ln)i!b)]nﬂ)). @.5)

Thus the atom in the upper state with the field in a number state is just

a)lm) == () ). @“6)
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Figure 35. Reversible evolution in non-RWA for parameters of Ref, 19 with
field in a displaced number state. (a) Purity vs. time. (b) Atomic expectation values

z(f) and x(t).
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As shown above in Sec. 3.3, the eigenstates of the non-RWA are approximately

o i b DR C D) @)

The forms of these two sets of states are very similar. Thus, a more appropriate

choice for the initial state in the non-RWA (in order to compare to the RWA) would

be

|%(0)) = |+x)D‘f(£)] ny, (4.8)

@
which has the evolution shown in Fig. 35. The calculation shown in that figure should
be compared to Fig. 3e of Ref. 19, in which g=0.898, w=w, (resonance), n=10, and
£=1.420, and which shows highly irreversible evolution. In contrast, the evolution in
Fig. 35 is, to a good approximation, clearly reversible, even when the semiclassical
model is strongly chaotic and the approximation leading to Eq. 4.7 is not particularly
good. This comparison again demonstrates the importance of choosing appropriate
initial conditions when comparing the results from the RWA and non-RWA models.

Now we will examine the quantum uncertainty. In Ref. 19 the quantum
uncertainty is defined as

U =Aa, - Aa,. (4.9)

In Fig. 4 of that reference, U(¥) is shown for five values of g={0.045, 0.090, 0.224,
0.449, 0.898}, starting with the field in a coherent state with 7=10 and the atom in the
lower eigenstate. They state that these five values of g all correspond to increasing
values of the Lyapunov exponent in the semiclassical model, and that figure shows that
U(?) increases more rapidly for larger (hence more chaotic) values of g. However, it is
difficult to attribute the growth of the uncertainty to semiclassical chaos because the
smaller values of g show growth as well as the larger values. For example, their Fig.

4c-¢ (g=0.224, 0.449, 0.898 respectively) yield the same general behavior: rapid
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growth in U(¢) until it reaches a roughly asymptotic value, which is larger for larger
values of g. Curves (c) and (d) exhibit the greatest similarity to each other, having
roughly the same slope and asymptotic value. Semiclassically, however, they could
not be more different. My calculations show that the Lyapunov exponent for the
parameters of curve (c) is converging on zero and is clearly non-chaotic while the
parameters of curve (d) give behavior which is clearly chaotic with a Lyapunov
exponent of approximately 0.09. The differences in the evolution of these two
parameter sets semiclassically and similarities quantum mechanically virtually eliminate
semiclassical chaos as the cause of the uncertainty growth.

Grigolini, et al. are not alone in mis-attributing any differences observed
between the RWA and non-RWA behavior to chaos. In Ref. 27 Graham and
Hohnerbach do the same. They claim the disappearance of revivals is a mark of
semiclassical chaos, as are changes in the power spectrum of the field. Figure 3 of
Ref. 27 shows the occupation probability of the upper state vs. time for a quantum
trajectory starting from the state Ja) with g/@=0.01 and 7=100. (The occupation
probability of the upper state is simply (1+z)/2.) The trajectory shows definite revivals
and collapses, similar to Fig. 25. They contrast that to the behavior shown in their Fig.
4, for which g/@=0.075 and all else is the same. Their Fig. 4 shows no clear revivals,
which they claim is the result of semiclassical chaos based on their analytic
approximations. Their approximation is based upon studying a quantity, K, formed
from a combination of spin and field variables which is conserved in the RWA but not
conserved in the non-RWA. Using the counter-rotating terms they calculate an
expression for K, which they evaluate using results from the RWA. This process
leads to a prediction that the entire phase space will be chaotic for the parameters used
in their Fig. 4. Unfortunately, these parameters (g/«w=0.075, £&=0.375, m=100) yield

trajectories which, according to my calculations, are completely regular, whether
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starting from |a) or either of the quasiclassical states. Furthermore, the absence of

revivals is not surprising because the given value of &£ means the initial state |a) is

composed mostly of the minus branch.

They find an analytical result for the power spectrum in the RWA which predicts
two peaks symmetrically displaced from nominal field frequency w by :Eg/Z\[)_T . These
two peaks are, of course, the field corresponding to the plus and minus branches.
They then claim the asymmetry due to the dominance of one peak is a signature of
semiclassical chaos. Their Fig. 6 is used to support this claim, where they plot the
power spectrum for g/@=0.1, £&=0.4, and 7=64. This plot shows two peaks, the lower
frequency peak larger than the other by approximately a factor of 2.9/0.35=8, each
centered at frequencies w~1+0.002. Using the Autler Townes model we find the
upper atomic state is composed of |a) ~ 0.30| y, ) +0.95 y_). The ratio of the squares
of these components yields approximately 9, in reasonable agreement to the ratio of
the sizes of the two peaks. Equation 2.14 gives an interaction induced detuning of
0.002w, again in agreement with their result. And finally, like the previous example
from their paper, the semiclassical model is not, based on my calculations, chaotic for
this set of parameters. In summary, they have compared their results of quantum
calculations using the RWA and non-RWA, attributing differences in these results to
the presence of chaos in the semiclassical model. The differences can be better
explained as the result of differences in the quasiclassical states between the RWA and
non-RWA models.

What then can be said about the correlations between semiclassical chaos and
quantum mechanical evolution? The conclusion of the present work is: for the spin
1/2 system, little or nothing. Recall the marked transition to chaos in the semiclassical
model for the plus branch near 77=90 with e&=1. Figure 36 compares the evolution in
the Bloch sphere for 7=100 and 7=81. Semiclassically, there is an extensive
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difference between the trajectories. The chaotic trajectory covers about two-thirds of
the surface of the sphere, while the regular trajectory remains confined to the
neighborhood of the Autler-Townes Floquet eigenstate, as discussed in Sec. 2.3. The
relevance of the quasiclassical states is apparent, since the quantum trajectories bear a
remarkable resemblance to the regular semiclassical trajectory. In addition, the two
quantum mechanical trajectories are virtually indistinguishable from each other.
Moreover, the similarity between the two trajectories does not stop at the Bloch
sphere evolution. Figures 37-39 compare the purity, spectra, and uncertainty product
for the two quantum trajectories.

In Fig. 37, one main difference in the purity for the two quantum trajectories can
be readily observed. For the trace for 77=81, a few oscillations are visible at the very
beginning and again near /=550. These correspond to a partial collapse and revival
due to the unavoidable presence of some portion of the minus branch field, as
discussed in Sec. 3.3. The partial collapse and revival are also visible in the trace for
m=100, but around =675. The ratio of these two times, according to Eq. 3.14,
should be equal to the ratio of 77 for each trajectory. In fact, the ratio is approximately
0.814, in agreement with the predicted value of 0.81. However, there are no other
significant differences between the trajectories to indicate the semiclassical system has
undergone a transition to chaos.

A similar comparison can be made from Fig. 38. The spectra from the quantum
trajectories are shown together in Fig. 38a. The major features of each spectrum are
identical. The differences in the two spectra at the base of some of the peaks are
artifacts of the Fourier transform resulting from the difference in the interaction
induced detuning for the two trajectories. On the other hand, Fig. 38b contrasts the
two spectra for the semiclassical system. For 77=100 two small peaks can be seen near

the odd values of w, while for 7=81 these are regions of noise. Likewise, the base of
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Figure 36. Comparison of plus branch trajectories for semiclassically regular
and chaotic behavior with &=1 for /=200. (a) Quantum trajectory, #=100. (b)
Quantum trajectory, 77=81. (c) Semiclassical trajectory, 7=100. (d) Semiclassical

trajectory, n=81.
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Quantum model. (b) Semiclassical model
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each even value of @ is a region of noise for the chaotic trajectory. The two small
peaks in the 7 =100 spectrum result from the Autler-Townes model not giving the

- precise starting point needed for a periodic trajectory in the semiclassical model. By
trial and error, though, one can “zero in” on the optimum starting point and make the
pair as small as desired. However, trial and error, even to 8 decimal place accuracy,
does not get rid of the noise in the chaotic spectrum or provide a stable trajectory.

Finally, Fig. 39 shows the evolution of the quantum uncertainty, U, given by Eq.
4.9. In this figure, U is plotted against a scaled time, #/77, in order to suppress the
difference in the two trajectories due to the interaction induced detuning. Without the
scaling the uncertainty for 7=81 grows somewhat faster than for 7=100. However,
the scaling demonstrates that the faster growth is not due to chaos, but to the
interaction induced detuning as the field phase uncertainty grows (see Fig. 26). The
two trajectories do not significantly differ until about one half of the revival time, when
the coherent state approximation begins to fail. Even then, the difference in the two
trajectories is small.

To further illustrate the absence of a link between semiclassical chaos and the
behavior of the quantum model, consider now the evolution along the minus branch.
The next series of figures, Figs. 40-43, starts along the minus branch, which does not
display chaos for 7>30. The main differences between these trajectories and those of
the previous set of figures are in the semiclassical trajectory for n=81. Figure 40d
shows that the orbit for 7=81 remains stable, while Fig 42b shows that the spectra for
n=81 and #7=100 are virtually identical. The quantum model trajectories differ only
slightly along the plus and minus branches. The minus branch trajectories are less pure
than their plus branch counterparts, as shown in Fig. 41. In addition, the revivals are
even more obscured for the minus branch. These observations run directly counter to

the contentions of Grigolini and Graham, since the minus branch is not chaotic.
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Likewise, Fig. 43 shows that the uncertainty product for the minus branch trajectories
is higher than the uncertainty product for the plus branch trajectories. Although it is
notable that the uncertainty products are closer in value for the two minus branch
trajectories, the larger value for the minus branch shows there is no correlation with
the chaotic behavior of the semiclassical model. These examples demonstrate the
absence of a direct correlation between semiclassical chaos and the behavior—whether

measured by purity, entropy, spectrum, or uncertainty—of the quantum model.




Figure 40. Comparison of minus branch trajectories for parameters which lead to
regular and chaotic behavior for the plus branch (see Fig. 36). (a) Quantum trajectory,
n=100. (b) Quantum trajectory, 7=81. (c) Semiclassical trajectory, 7=100. (d)

Semiclassical trajectory, n=81.
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4.2 Higher values of Angular Momentum

The difficulty in establishing a correspondence between the onset of chaos in the
semiclassical problem and a signature in the quantum problem seems to be related to
the highly non-classical nature of a two level atom. The field is as classical as possible
in a coherent state, which has the minimum possible uncertainty. However, the spin
state can be made more classical by moving to higher values of angular momentum
quantum number, j. Increasing j corresponds to an interaction between the field and a
larger number of atoms, N, where N=2j. Graham and Hohnerbach showed the
distribution of eigenvalues becomes typical of a chaotic system for larger values of
j.2527 Moving to higher values of j might make the quasiclassical states evolve more
closely to the semiclassical states in the chaotic regime.

Numerically, calculating trajectories for higher values of j is much more
challenging: The larger number of atomic states to calculate is compounded by the

scaling given immediately following Eq. 2.8:
£ )

a, > a,4J2] Ny
= J
n—a2j z (’>/J

principally, that 77 increases linearly with j. Increasing from j=1/2 to j=3/2 results in a
roughly fivefold increase in computations at each time step. Furthermore, increasing

n results in higher frequencies which must be integrated using smaller time steps. For
the first example given below, increasing from j=1/2 to j=3/2 resulted in an increase in
computation time by a factor of forty. For this reason, this investigation was halted at

J=3/2, even though higher values of j might prove to be interesting.




The Hamiltonian (1.1) for the higher j states becomes

H = hwyt, +haa'a+ng(J, +J Na+a'),

where, for j=3/2, J.
3

20 0 0
0L 0 0
J. =h
00 -1 0
00 0 -2
(0 V3 0 o
0 0 2 0
J, =h
0 0 0 3
0 0 0 O
0 0 0 0
30 0 0
J,:h‘/—
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s Y

Jy, and J_ are given by:

(4.11)

(4.12a)

(4.12b)

(4.12¢)

Obviously, the eigenstates of J, are the basis states for describing the state of the three

atoms. While the state of the j/=1/2 system can be completely specified by two

parameters, such as polar angles @and ¢ (up to an unimportant overall phase), this is

not the case for j=3/2. Instead, the equivalent initial condition is specified as an

eigenstate of the operator J -/, where /i is a unit vector specified by polar angles 8

and ¢. Using the standard angular momentum relationships J,=(J,+J.)/2 and J=(Jrd.

)/2i, (quite) a bit of algebra yields the starting points for the plus and minus branches

|y, )=

\

i 0
e cos® —
2

V3e*sin 6 cos’ 6
2 2

e g
V3sin2 Zcos—
2 2

s . 10
e sin® —
2
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e sm- —
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—e' cos® —
2

A

(4.13)

These are the eigenstates of J - /i with eigenvalue +3/2, and become the special plus

and minus branch starting points with 8=6,.
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There are no tremendous differences in the evolution of the quasiclassical states
for these values of j, although some interesting effects do begin to arise. Figure 44
shows the Bloch sphere evolution for the small £ case shown in Fig. 18, but for a
shorter time (#=126). The parameters used in the j=3/2 model are £=0.141, 7 =96, and
£=0.02887 (0.05/43), which correspond to £=0.141, i7=32, and g=0.05 for j=1/2.
The only significant difference is that the deviations from the Autler-Townes model
(which are just small amplitude Rabi oscillations) at the beginning of the trajectory are
smaller. In this way the larger j model does match the semiclassical model more
closely than the j=1/2 model. Since both of these sets of parameters scale to the same
parameters for the semiclassical model, we expect the detuning will be the same for
both values of j, which is indeed the case, based on the complex phasor method of
finding the detuning.

As ¢is increased, the differences between the j=1/2 and the j=3/2 models
become somewhat more pronounced, and the j=3/2 model begins to show
characteristics which are reminiscent of the semiclassical model. Let us examine these
characteristics using a set of trajectories for the j=3/2 model which have parameters
corresponding to those already seen, &=1 and 7=81 or #=100. For the j=3/2 model
the corresponding values are &=1 and 7=243 or n=300 The differences between the
j=1/2 and the j=3/2 models are first observable in Fig. 45, in which we can see the
trajectories begin to spiral inward as the system loses purity more quickly than for the
Jj=1/2 model (refer to Fig. 36 and Fig. 40), especially in regard to the plus branch. The
difference between the plus and minus branches, which was almost indiscernible for
Jj=1/2, is now quite distinct.

Another difference, although subtle, is demonstrated by Fig. 46. This figure
shows the Bloch sphere from a different orientation, looking along the +y axis. In

three of the plots (a), (c), and (d), the trajectories are roughly symmetrical about x=0.
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However, in (b) the trajectory is shifted slightly in the +x direction. This particular
plot corresponds to the chaotic semiclassical trajectory shown in Fig. 36d, which
clearly shows a strong shift toward +x. Figure 47 contrasts x(¢) for the plus branch in
the j=3/2 and j=1/2 models. Both trajectories correspond to £=1.0 and 7 =81 in the
semiclassical model. In addition to the faster oscillations with w=(2n+1)w’, x() for the
Jj=1/2 model exhibits normal, slower Rabi oscillations under a Gaussian collapse
envelope. These are similar to the oscillations observed in the Autler-Townes model
given by Eq. 2.9 for y#0. Of course, in the Autler-Townes model the oscillations do
not collapse. However, the oscillations for the j=3/2 model are different. Figure
47shows the maximum value of x reached on each fast oscillation changes very little,
while the minimum value of x increases considerably. This behavior results in the shift
toward +x, not unlike the shift seen in the semiclassical model, and is perhaps a
signature of the transistion to chaos.

The purity also shows a possible signature of the semiclassical chaos, as shown
in Fig. 48. While for j/=1/2 the purity of the (non-chaotic) minus branch was lower
than the purity for the (chaotic) plus branch, for j=3/2 the purity of the plus branch is
lower. It is not unexpected that the purity along a particular branch will be slightly
lower for smaller 77, as observed for the minus branch. However, the purity for the
plus branch is substantially less for the smaller 77 trajectory, again suggesting the lower
purity could conceivably be a signature of semiclassical chaos.

Finally, the uncertainty product for the j=3/2 model yields results similar to those
for the purity: The uncertainty product is significantly larger for the plus branch than
for the minus branch, a reverse of the j=1/2 result. However, Fig. 49 shows the
uncertainty product is almost independent of # along a particular branch when plotted

against the scaled time.
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Clearly more work can be done in this area. The results here are intriguing
because they suggest the possibility the signatures of chaos put forward by Grigolini,
et al. may be applicable for higher values of j. However, these results do not support
a definitive statement for either case. Additional work must be done by extending the
integration time, examining the transition to chaos at other points in the parameter
space, studying the eigenvalue structure, and, finally, repeating the process for higher
values of j. Although the resources were not available to undertake these additional
investigations in support of the present effort, the initial investigation has opened the

possibility for further work in this field.
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Figure 44. Bloch sphere evolution for the j=3/2 model with £&=0.141 and 77=96.

Parameters correspond to the semiclassical parameters £=0.141 and 7=32, the same as

Fig. 18, for a time of £=50. (a) Schrodinger picture. (b) Interaction picture.
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Figure 45. Bloch sphere evolution for j=3/2 model with &=1.0 up to +=50. Parameters

correspond to semiclassical model with £&=1.0 and #=100 and 7=81. (a) Plus branch,

m=300, (b) plus branch, #=243, (c) minus branch, 77=300, (d) minus branch, /7=243.




Figure 46. Bloch sphere evolution for j=3/2 model with £&=1.0. (a) Plus branch,
17=300, (b) plus branch, 77 =243, (c) minus branch, 7=300, (d) minus branch, 7 =243.

This view shows the trajectory for (b) is skewed toward the +x axis, while the others

are symmetric about x=0.
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Figure 47. Comparison of x(¢) along the plus branch for j=1/2 and j=3/2 with
parameters corresponding to semiclassical parameters £=1.0, 7=81. The j=1/2 model

exhibits normal Rabi oscillations, while the j=3/2 model is skewed toward x=+1.
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Figure 48. Purity vs. time along the plus and minus branches for £=1.0 with j=3/2 (a)
Plus branch, which semiclassically becomes chaotic. (b) Minus branch, which remains

non-chaotic.
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Figure 49. Comparison of uncertainty product along the plus and minus branches for
the j=3/2 model, using the same parameters as in Fig. 48. (a) Plus branch (b) minus

branch.
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4.3 Conclusion

This work began with a review of the recent and not-so-recent efforts to
investigate the behavior of the spin-boson system. Much work has been done using
various approximations with the field treated both classically and quantum
mechanically. With a semiclassical field the system had been shown to exhibit chaotic
behavior in the realm of large numbers of atoms and an initially weak field. We then
studied some of the tests for chaos and found another region of chaos: single atoms
and intense fields. A special set of states which evolved quantum mechanically and
semiclassically in close agreement were identified and studied. In spite of their
similarity, one of these trajectories became unstable before the other. The reason was
identified as a merging of harmonics in the spectra which resulted in the trajectories
becoming unstable. Meanwhile, the quantum trajectories did not change their
behavior. Thus we have seen clearly an example in which the semiclassical system
undergoes a transition from regular to chaotic behavior, while the quantum system is
qualitatively unchanged. This example strongly supports the contenti.on that the
changes observed in the purity (or entropy) and the quantum uncertainty are unrelated
to the presence of chaos in the semiclassical model. By carefully comparing the
semiclassical and quantum models using the quasiclassical states, we have found there
is no essential difference in the quantum evolution between the manifestly non-chaotic
RWA and the non-RWA models, so long as the quasiclassical approximation holds.
The quasiclassical approximation holds until &/ir (or g/ Vi ) becomes too large or i1
becomes too small. Most importantly, the key in comparing the RWA to the non-
RWA is in comparing similar states—whether comparing evolution along a particular

branch or along a linear combination of branches.
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Finally, an intriging area has been opened, that of the dynamics of the system for
larger values of angular momentum quantum number, j. The one example examined
here, j=3/2, indicated the possibility that certain signatures of chaos may be present.
The quasiclassical trajectories for this value of j were not more factorizable in the
region near chaos. However, it did show share some characteristics with the

semiclassical model, and, as in all fields of research, more work remains to be done.
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APPENDIX A

Matrices used in Perturbation
Calculation

In Sec. 2.3 a calculation to find the frequencies which
appear in the semiclassical model was presented. However,
the matrices were sufficiently large to be impractical for
inclusion in the main text. Therefore they have been
relegated to this appendix. Equation 2.20 is a sum of matrix
equations, but because some of the matrix elements contain
complex exponentials, the terms in the sum are not
independent. Therefore, the summation needs to be
rewritten into a single matrix equation which can be
numerically and perturbatively solved. The basis vectors
can be broken into five parts corresponding to &a,, da,, ox,
oy, and dz. Each of these five parts has an infinite number
of elements corresponding to the coeflicients of the
complex exponential e{v*)! - An arbitrary vector x may be
written as shown to the right. Furthermore, suppose we
designate the subvectors of x corresponding to the different
expectation values as Xay> Xp X, €HC. Likewise, we can
designate submatrices of the matrices A and Bas A ,,
Bal,z, etc., using the standard row, column index
convention. Now we can determine specifically the various

non-zero parts of A. The simplest parts are those identified
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by 1 in Eq. 2.20, A =A™ A "A These submatrices are merely the

ayay ajpx

identity matrix, with +1 along the main diagonal of the submatrix. The next simplest

to determine are the submatrices along the main diagonal of A. These all have the

form

.0 0 00 O O 0 O
0 nu 00 0 0 o0 O
0 0 .0 0 0 O 0 0
0O 0 0 0 0 O O O

e =0 0 0 00 0 0 0 O
0O 0 0 00 - O 0 O
0O 0 0 00 O 0 0 (A2)
0 0 0 00 O O -nu O
0O 0 0 00 O O O

ZA L TALTA L FA

Now comes the cosine expansion. Because of the two exponentials forming the
cosine function, the index of each element multiplied by this term will be raised or

lowered by 1, thus

0 o 0 O 0 0 o0 0
. 0 -4 0 0 0 0 0 0
0 -4¢ 0 -4 0 O 0 0 O
0 0 -4¢ 0 -4 0 O 0 O
A,=l 0 0 0 -4 0 -4 0 0 O
0 0 0 0 -4 0 -4 0 O
0 0 0 0 0 -4¢ 0 -4¢ O (A3)
0 0 O O 0 0 -4 0
o o0 0 0 0 0 0 0
=-A,

The first part of the matrix B is also straightforward. The submatrix B,, . is the
identity matrix multiplied by the constant -3. To obtain the next part we will return to

the equation from which the matrices are extracted, considering only the y portion,
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(Bx), =—z*"(0) 3 &u, " (A.4)

n=-—uw

Now expanding z47 as a sum of complex exponentials

mn

(Bx)y = i ZAT &l|'nei[ l‘+(n+m)’,J,
©

nm=—

(A.S5)
S [l
_ AT i vimpu
- szvn&xl,ne
n,m=-a0
From this expression it is evident that the matrix element B, = -z or
20 Z-l zn-—m
Z Zy, Z,
B =- z b4 z
a.y 1 0 -1
' . (A.6)
Z Z Z,
zm—n zl ZO

Likewise, B, , will have the same form, except with y47 in place of z.

al,z
In practice, the submatrices were each truncated at 31 rows to calculate the
unperturbed eigenvectors, for a total of 155 elements in each eigenvector and 24,025

elements in each matrix.




APPENDIX B

A Note on Numerical Methods

A large portion of this research has been done numerically, and so a note on the
methods employed is in order. Several types of calculations were accomplished
numerically: algebraic calculation, integration, and eigensystem solution. Most of the
computations were performed using a personal computer (40 MHz 80386SX with
80387 coprocessor and 8 MB memory), although some were performed on the
University of Arkansas mainframe (Sun SparcCenter 2000 with eight 40 MHz
microprocessors and 256 MB memory).

Algebraic calculations were generally accomplished using Mathcad. This
includes evaluations of the Floquet exponent, 4,, the A’s and B’s, etc. Analysis of the
numerical integrations (plots of time series, FFTs, Poincaré sections, etc.) was also
done in Mathcad. Most plots in the main text are Mathcad output. In addition, some
of the symbolic manipulation capabilities of Mathcad were used during analytical
work.

The numerical integration was accomplished using a fourth-order Runge-Kutta
routine with adaptive step size control. The algorithm and much of the code was
taken from the book Numerical Recipes in Pascal (Press, Flannery, Teukolsky, and
Vetterling, Cambridge University Press, 1989). The adaptive step size control is
implemented by taking a single step in time, then repeating the calculation in two
steps, each using one half the original step size. If the difference in the result is
sufficiently small, then the result is saved and a new step size is computed based on the
difference. If the difference is too large, a new step size is computed and the process

repeated. The accuracy parameter (¢ps in the reference given above) was set at 10-8
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to achieve a balance of execution speed and accuracy. The program on the PC was
implemented using Turbo Pascal for Windows. Semiclassical calculations required
about 2 minutes for /=200 in the examples used in Chapter 4. Quantum j=1/2
calculations required about 2 hours for the corresponding trajectories. All the
numerical integration for the j/=3/2 model was done on the mainframe. The same
integration routine was used. Using the parameters of the first example in Sect. 4.2,
for r=4m, the j=1/2 case required about 2 minutes of real time to complete, while the
J=3/2 case required about 80 minutes of real-time. CPU time was approximately one
half of those amounts. The later examples for the j=3/2 case required 15-16 hours of
CPU time to integrate up to =50. The normalization of the wavefunction and the
total energy were computed to check the accuracy of the integration, and both were
typically conserved to 1 part in 10107,

The eigensystems were solved using a combination of programming and
Mathcad. A simple program from Numerical Recipes in Pascal was employed to
calculate the eigenvalues of (1.1), which is tridiagonal if separated into its even and
odd parity parts. All other eigenvalues and all eigenvectors were computed using the
built-in eigenvalue and eigenvector functions of Mathcad. The calculation of
eigenvalues typically required a few minutes to complete on the PC, while the

calculation of a full set of eigenvectors could take several hours.




